
Lists and Other Monoids
Tom Schrijvers

Leuven Haskell
User Group

Recursion 
Schemes

GADTs

Type  
Families

Monads

Effect  
Handlers

Data
Genericity

Expression
Problem

Free
Theorems

Lists  
and  
Other  

Monoids

DSLs

Type
Classes

…

Data
Genericity

Recursion 
Schemes

GADTs

Type  
Families

Monads

Effect  
Handlers

Data
Genericity

Expression
Problem

Free
Theorems

Lists  
and  
Other  

Monoids

DSLs

Type
Classes

…

Data
Genericity

Lists  
and  
Other  

Monoids

Introduction to
Monoids

Abstract Patterns

Abstract Patterns

Math

Haskell’s Math Inspiration

Haskell’s Math Inspiration

Algebra

Haskell’s Math Inspiration

Algebra

Abstract

Haskell’s Math Inspiration

Algebra

Abstract Universal

Haskell’s Math Inspiration

Algebra Category
Theory

Abstract Universal

Algebra Category
Theory

Algebra Category
Theory

regular  
Haskell monoids

Algebra Category
Theory

regular  
Haskell monoids

monoids in the
category of

endofunctors

Algebra Category
Theory

regular  
Haskell monoids

monoids in the
category of

endofunctors

Haskell  
monads and  

applicative functors

The Monoid Structure

4
ingredients

The Monoid Structure

4
ingredients

A set
M

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

A set
M

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…}

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…} + : ℤ × ℤ → ℤ

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…} + : ℤ × ℤ → ℤ

0 ∈ ℤ

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…} + : ℤ × ℤ → ℤ

0 ∈ ℤ

Left Unit xε ⨂ x =

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…} + : ℤ × ℤ → ℤ

0 ∈ ℤ Right Unit x ⨂ ε x=

Left Unit xε ⨂ x =

The Monoid Structure

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

ℤ = {…,-1,0,1,…} + : ℤ × ℤ → ℤ

0 ∈ ℤ
Associativity x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

Right Unit x ⨂ ε x=

Left Unit xε ⨂ x =

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

Int

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

A function
⨂ :: M → M → M

Int

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

A function
⨂ :: M → M → M

Int (+) :: Int -> Int -> Int

An element
ε :: M

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

A function
⨂ :: M → M → M

Int (+) :: Int -> Int -> Int

An element
ε :: M

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

A function
⨂ :: M → M → M

Int (+) :: Int -> Int -> Int

0 :: Int

An element
ε :: M

Haskell Monoids

4
ingredients

A binary operator
⨂ : M × M → M

An element
ε ∈ M

A set
M

3 Properties

Left Unit

Right Unit

Associativity

x

x ⨂ ε

x ⨂ (y ⨂ z) (x ⨂ y) ⨂ z=

x

ε ⨂ x

=

=

A type
M

A function
⨂ :: M → M → M

3 Properties

Int (+) :: Int -> Int -> Int

0 :: Int

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

A type
M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

A type
M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

A function
⨂ :: M → M → M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

A function
⨂ :: M → M → M

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

A function
⨂ :: M → M → M

3 Properties

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

A function
⨂ :: M → M → M

3 Propertiesnot in the
Haskell

language

😕

Monoid Type Class

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m
 
 

(<>) = mappend

Data.Monoid

An element
ε :: M

A type
M

A function
⨂ :: M → M → M

3 Properties

convenient binary
operator

Monoid Instance
class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m

instance Monoid Int where  
 mempty = 0  
 mappend = (+)

Monoid for Bool?

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m

instance Monoid Bool where  
 mempty = ???  
 mappend = ???

Two Possible Instances

instance Monoid Bool where  
 mempty = True  
 mappend = (&&)  
 
instance Monoid Bool where  
 mempty = False  
 mappend = (||)

Two Possible Instances

instance Monoid Bool where  
 mempty = True  
 mappend = (&&)  
 
instance Monoid Bool where  
 mempty = False  
 mappend = (||)

Two Possible Instances

instance Monoid Bool where  
 mempty = True  
 mappend = (&&)  
 
instance Monoid Bool where  
 mempty = False  
 mappend = (||)

Two Possible Instances

instance Monoid Bool where  
 mempty = True  
 mappend = (&&)  
 
instance Monoid Bool where  
 mempty = False  
 mappend = (||)

Can’t have two
instances for the

same type!!!

Data.Monoid

What's in a name? that which we call a Bool
By any other name would smell as sweet;

Newtype to the Rescue!
Data.Monoid

What's in a name? that which we call a Bool
By any other name would smell as sweet;

Newtype to the Rescue!
newtype All = All { getAll :: Bool }  

instance Monoid All where  
 mempty = All True  
 All x `mappend` All y = All (x && y)  
 
newtype Any = Any { getAny :: Bool }  
 
instance Monoid Any where  
 mempty = Any False  
 Any x `mappend` Any y = Any (x || y)

Data.Monoid

Newtype to the Rescue!
newtype All = All { getAll :: Bool }  

instance Monoid All where  
 mempty = All True  
 All x `mappend` All y = All (x && y)  
 
newtype Any = Any { getAny :: Bool }  
 
instance Monoid Any where  
 mempty = Any False  
 Any x `mappend` Any y = Any (x || y)

Data.Monoid

Both isomorphic to
Bool

Newtype to the Rescue!
newtype All = All { getAll :: Bool }  

instance Monoid All where  
 mempty = All True  
 All x `mappend` All y = All (x && y)  
 
newtype Any = Any { getAny :: Bool }  
 
instance Monoid Any where  
 mempty = Any False  
 Any x `mappend` Any y = Any (x || y)

Data.Monoid

Newtype to the Rescue!
newtype All = All { getAll :: Bool }  

instance Monoid All where  
 mempty = All True  
 All x `mappend` All y = All (x && y)  
 
newtype Any = Any { getAny :: Bool }  
 
instance Monoid Any where  
 mempty = Any False  
 Any x `mappend` Any y = Any (x || y)

Data.Monoid

Newtype to the Rescue!
newtype All = All { getAll :: Bool }  

instance Monoid All where  
 mempty = All True  
 All x `mappend` All y = All (x && y)  
 
newtype Any = Any { getAny :: Bool }  
 
instance Monoid Any where  
 mempty = Any False  
 Any x `mappend` Any y = Any (x || y)

Data.Monoid

Two non-conflicting
instances

Same Problem for Num
Sum a

Product a

Data.Monoid

Num a => a

Same Problem for Num
Sum a

Product a

Homework
Invent 10 more monoid

structures for Int

Data.Monoid

Num a => a

Applications

The diagrams Package

Brent Yorgey

1

The diagrams Package

Brent Yorgey

=
<>

1

The diagrams Package

Brent Yorgey

=
<>

`atop`

1

--enable-foo --disable-foo --enable-foo --baz=help

e.g., Command-Line Options:

Duncan Coutts

Compositional Settings
2

--enable-foo --disable-foo --enable-foo --baz=help

e.g., Command-Line Options:

Duncan Coutts

Compositional Settings

<>default  
setting

setting  
update <><> setting 

update…

2

Compositional Settings
data ConfigFlags =  
 ConfigFlags {
 foo :: Flag Bool,
 bar :: Flag PackageDB,
 baz :: [String]
 }

2

Compositional Settings
data ConfigFlags =  
 ConfigFlags {
 foo :: Flag Bool,
 bar :: Flag PackageDB,
 baz :: [String]
 }

data Flag a = Flag a | Default

instance Monoid (Flag a) where
 mempty = Default
 _ `mappend` f@(Flag _) = f
 f `mappend` Default = f

right biased

2

Compositional Settings
instance Monoid ConfigFlags where
 mempty =  
 ConfigFlags  
 { foo = mempty  
 , bar = mempty  
 , baz = mempty  
 }
 
 c1 `mappend` c2 =  
 ConfigFlags  
 { foo = foo c1 <> foo c2  
 , bar = bar c1 <> bar c2  
 , baz = baz c1 <> baz c2  
 }

2

Data Aggregation
3

Data.Foldable

class Foldable t where
 foldMap :: Monoid m  
 => (a -> m)  
 -> (t a -> m)

Data Aggregation
3

Data.Foldable

class Foldable t where
 foldMap :: Monoid m  
 => (a -> m)  
 -> (t a -> m)

polymorphic collection

Data Aggregation
3

Data.Foldable

toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
…

class Foldable t where
 foldMap :: Monoid m  
 => (a -> m)  
 -> (t a -> m)

polymorphic collection

Data Aggregation
3

data Tree a  
 = Empty  
 | Fork (Tree a) a (Tree a)  

instance Foldable Tree where
 foldMap gen Empty  
 = mempty  
 foldMap gen (Fork l x r)  
 = foldMap gen l <> gen x <> foldMap gen r

Data Aggregation
3

data Tree a  
 = Empty  
 | Fork (Tree a) a (Tree a)  

instance Foldable Tree where
 foldMap gen Empty  
 = mempty  
 foldMap gen (Fork l x r)  
 = foldMap gen l <> gen x <> foldMap gen r

> sum (Fork (Fork Empty 5 Empty) 3 Empty)  
8  
> maximum (Fork (Fork Empty 5 Empty) 3 Empty)  
5

Data.Foldable

Foldable/Traversable
Proposal

3

toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
…

Data.Foldable

Foldable/Traversable
Proposal

3

toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
…

aka  
Burning Bridges

Proposal

Data.Foldable

Foldable/Traversable
Proposal

3

Prelude

toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
…

In Prelude as of
GHC 7.10

aka  
Burning Bridges

Proposal

Divide & Conquer

Linear Processing

x1

x2

x3

x4

+

+

+

Linear Processing
x1 <> (x2 <> (x3 <> x4))

x1

x2

x3

x4

+

+

+

Linear Processing
x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)
x1

x2

x3

x4

+

+

+

Linear Processing
x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)

x1 <> (x234)

x1

x2

x3

x4

+

+

+

Linear Processing
x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)

x1 <> (x234)

x1234

x1

x2

x3

x4

+

+

+

Linear Processing
x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)

x1 <> (x234)

x1234

x1

x2

x3

x4

+

+

+

n-1 gate
delays

Linear Strategy

mconcat :: Monoid m => [m] -> m
mconcat = foldr mappend mempty

Data.Monoid

Parallel Processing

x1

x2

x3

x4
+

+

+

Parallel Processing
(x1 <> x2) <> (x3 <> x4)

x1

x2

x3

x4
+

+

+

Parallel Processing
(x1 <> x2) <> (x3 <> x4)

x12 <> x34
x1

x2

x3

x4
+

+

+

Parallel Processing
(x1 <> x2) <> (x3 <> x4)

x12 <> x34

x1234

x1

x2

x3

x4
+

+

+

Parallel Processing
(x1 <> x2) <> (x3 <> x4)

x12 <> x34

x1234

x1

x2

x3

x4
+

+

+

log n gate
delays

Parallel Strategy
pconcat :: Monoid m => [m] -> m
pconcat [] = mempty
pconcat [x] = x
pconcat xs = (ys `par` zs) `pseq` (ys <> zs)  
 where
 len = length xs
 (ys', zs') = splitAt (len `div` 2) xs
 ys = pconcat ys'
 zs = pconcat zs'

The List
Monoid

The List Monoid

class Monoid m where  
 mempty :: m  
 mappend :: m -> m -> m

instance Monoid [a] where  
 mempty = []  
 mappend = (++)

Data.Monoid

Equational Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Left Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 mempty `mappend` ys  
= {- def. of mempty -}  
 [] `mappend` ys  
= {- def. of mappend -}  
 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 
Equational 
Reasoning

Right Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 l ++ []  
=  
 l

Right Unit Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 l ++ []  
=  
 l

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Base Case: l = []

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 [] ++ []  
= {- def. of (++) -}  
 []

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Base Case: l = []

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 [] ++ []  
= {- def. of (++) -}  
 []

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Inductive Case: l = x:xs

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 (x:xs) ++ []  
= {- def. of (++) -}  
 x : xs ++ []  
= {- ind. hypot. -}  
 x:xs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Inductive Case: l = x:xs

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 (x:xs) ++ []  
= {- def. of (++) -}  
 x : xs ++ []  
= {- ind. hypot. -}  
 x:xs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

 xs ++ [] = xsInduction Hypothesis

Inductive Case: l = x:xs

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 (x:xs) ++ []  
= {- def. of (++) -}  
 x : xs ++ []  
= {- ind. hypot. -}  
 x:xs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

 xs ++ [] = xsInduction Hypothesis

Inductive Case: l = x:xs

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 (x:xs) ++ []  
= {- def. of (++) -}  
 x : xs ++ []  
= {- ind. hypot. -}  
 x:xs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

 xs ++ [] = xsInduction Hypothesis

Inductive Case: l = x:xs

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 (x:xs) ++ []  
= {- def. of (++) -}  
 x : xs ++ []  
= {- ind. hypot. -}  
 x:xs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

 xs ++ [] = xsInduction Hypothesis

Associativity Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 xs ++ (ys ++ zs)  
=  
 (xs ++ ys) ++ zs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Associativity Proof

[] ++ ys = ys  
(x:xs) ++ ys = x : xs ++ ys

 xs ++ (ys ++ zs)  
=  
 (xs ++ ys) ++ zs

Proof Style: 
Structural
Induction

+ 
Equational 
Reasoning

Homework

The Free Monoid

Monoid (Homo)morphism
a function between monoids

f :: M1 -> M2

f mempty = mempty  
 
 
f (x <> y) = f x <> f y

such that:

and:

length (x ++ y) = length x + length y

length [] = 0

length :: [a] -> Int

Monoid (Homo)morphism
a function between monoids

such that:

and:

Free Monoid

A

M

gen

Free Monoid

A

M

gen FreeMonoid

Free Monoid

A

M

gen FreeMonoid

homomorphism

Free Monoid

A

M

gen FreeMonoid

inj

homomorphism

Free Monoid

A

M

gen

inj

homomorphism

[A]

Free Monoid

A

M

gen

homomorphism

[A]

\x -> [x]

Free Monoid

A

M

gen [A]

\x -> [x]

mconcat . map gen

What is a Data.Foldable?

T a

What is a Data.Foldable?

T a

m

foldMap gen

Data
structures that
support some

abstract
nonsense?

What is a Data.Foldable?

T a

[a]

toList

Data
structures that

support a  
list view!

m

foldMap gen

Data
structures that
support some

abstract
nonsense?

What is a Data.Foldable?

T a

mconcat . map gen

[a]

toList

Data
structures that

support a  
list view!

m

foldMap gen

Data
structures that
support some

abstract
nonsense?

What is a Data.Foldable?

T a

mconcat . map gen

[a]

toList

Data
structures that

support a  
list view!

m

foldMap gen

Data
structures that
support some

abstract
nonsense?

(Potentially) 
more efficient

Summary

Monoids

★ Simple concept from Algebra

★ Ubiquitous in Haskell

★ Cool Applications

★ List is the Free Monoid

Next time: 5/5/2015

Recursion
Schemes

GADTs

Type  
Families

Monads

Effect  
Handlers

Data
Genericity

Expression
Problem

Free
Theorems

DSLs

Type
Classes

…

Data
Genericity

Recursion 
Schemes

Lists
and
other

Monoids

Recursion
Schemes

GADTs

Type  
Families

Monads

Effect  
Handlers

Data
Genericity

Expression
Problem

Free
Theorems

DSLs

Type
Classes

…

Data
Genericity

Recursion 
Schemes

Lists
and
other

Monoids

GADTs

Type
Families

Type
Classes

Join the Google Group

Leuven Haskell User Group

