Lists and Other Monoids Tom Schrijvers

Leuven Haskell

Paka	Recursion	CADTs	DSLs
Cenericity Schemes			
C			
Expression			
Problem			

Daka	Recursion	CADTs	DSLs
Cenericity Schemes			
C			
Expression			

Introduction to Monoids

Abstract Patterns

Abstract Patterns

Haskell's Math Inspiration

The Monoid Structure

Haskell Monoids

Monoid Type Class

Monoid Type Class

Monoid Type Class

class Monoid m where

Monoid Type Class

class Monoid m where

An element
ع : : M

Monoid Type Class

class Monoid m where mempty : : m

An element
$\varepsilon:: ~ M$

Monoid Type Class

class Monoid m where mempty : : m

An element
$\varepsilon:: ~ M$

Monoid Type Class

class Monoid m where mempty : : m mappend : : m -> m -> m

An element
$\varepsilon::$ M

Monoid Type Class

class Monoid m where mempty : : m
mappend :: m -> m -> m
An element
$\varepsilon:: ~ M$

```
A function
\(\otimes:: \mathbf{M} \rightarrow \mathbf{M} \rightarrow \mathbf{M}\)
```


Monoid Type Class

class Monoid m where mempty : : m mappend :: m -> m -> m

An element
$\varepsilon::$ M

```
    A function
\otimes::M M M }->\mathbf{M
```


Monoid Type Class

class Monoid m where mempty : : m mappend :: m -> m -> m

An element
$\varepsilon::$ M

```
A function
\(\otimes:: M \rightarrow M \rightarrow M\)
```

3 Properties
(<>) = mappend

Monoid Instance

class Monoid m where mempty : : m mappend :: m -> m -> m
instance Monoid Int where mempty $=0$ mappend $=(+)$

Monoid for Bool?

class Monoid m where mempty : : m
mappend : : m -> m -> m
instance Monoid Bool where mempty = ???
mappend = ???

Two Possible Instances

Two Possible Instances

instance Monoid Bool where mempty $=$ True
mappend $=(\& \&)$

Two Possible Instances

instance Monoid Bool where mempty $=$ True mappend $=(\& \&)$
instance Monoid Bool where mempty $=$ False mappend $=(| |)$

Two Possible Instances

instance Monoid Bool where mempty $=$ True mappend $=(\& \&)$

Can't have two instances for the same type!!!
instance Monoid Bool where mempty $=$ False mappend $=(| |)$

What's in a name? that which we call a Bool By any other name would smell as sweet;

Newtype to the Rescue!

What's in a name? that which we call a Bool By any other name would smell as sweet;

Newtype to the Rescue!

 newtype All = All \{ getAll : : Bool \}newtype Any = Any \{ getAny : : Bool \}

Newtype to the Rescue!

 newtype All = All \{ getAll : : Bool \}
Both isomorphic to Bool

newtype Any = Any \{ getAny : : Bool \}

Data.Monoid

Newtype to the Rescue!

newtype All = All \{ getAll : : Bool \}
instance Monoid All where mempty $=$ All True
All x `mappend` All $\mathrm{y}=$ All ($\mathrm{x} \& \& \mathrm{y}$)
newtype Any = Any \{ getAny : : Bool \}

Data.Monoid

Newtype to the Rescue!

newtype All = All \{ getAll : : Bool \}
instance Monoid All where mempty $=$ All True
All x -mappend` All \(\mathrm{y}=\) All (\(\mathrm{x} \& \& \mathrm{y}\)) newtype Any = Any \{ getAny : : Bool \} instance Monoid Any where mempty \(=\) Any False Any \(x\) 'mappend` Any $y=A n y(x| | y)$

Newtype to the Rescue!

newtype All = All \{ getAll : : Bool \}
instance Monoid All where mempty $=11$ True
All x 'map end Two non-conflicting \&\& y)
newtype Any Any \{ getany : : Bool \}
instance Monoid Any where mempty $=$ Any False
Any x 'mappend` Any $y=A n y(x| | y)$

Same Problem for Num

Num $a=>a \longrightarrow$ Sum a

Same Problem for Num

Num $a=>a \longrightarrow$ Sum a

Homework
Invent 10 more monoid structures for Int

Applications

The diagrams Package

		$+{ }^{\circ} \cdot$			$0 \cdot 0$
	$\begin{aligned} & 0_{0}^{0} \\ & 0 \end{aligned}$				
	$\begin{aligned} & 0 \cdot 0_{0}^{0} \\ & 0 \cdot 0 \end{aligned}$				$\therefore *$ $\because \because$ $\therefore *$ \because
			$\begin{array}{ll} e^{*} & e^{\infty} \\ e_{0} & 0 \\ e_{0} & e_{0} \end{array}$		$\begin{gathered} * \\ 2 \% \\ 2 \% \\ \% \end{gathered}$
					$\begin{array}{cc} \therefore & \therefore \\ \therefore \therefore & \therefore \\ \because \because & \because \\ \because & \because \end{array}$

Brent Yorgey

The diagrams Package

					0
		$\begin{aligned} & \bullet \cdot \\ & \bullet \cdot \end{aligned}$			$0 \cdot 0$
	$\begin{aligned} & 0_{0}^{0} \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 999 \\ 989 \end{gathered}$		
	$\begin{aligned} & \theta_{0}^{0} 0_{0}^{0} \\ & 0 \end{aligned}$				$\begin{aligned} & \because 甘 \\ & \because 甘 \\ & \because 甘 \\ & \because 甘 \end{aligned}$
		$\begin{gathered} \quad \therefore \\ \therefore \dot{\therefore} \\ \therefore \therefore \\ \therefore \therefore \end{gathered}$			

Brent Yorgey

The diagrams Package

Compositional Settings

e.g., Command-Line Options:
--enable-foo --disable-foo --enable-foo --baz=help

Duncan Coutts

Compositional Settings

e.g., Command-Line Options:
--enable-foo --disable-foo --enable-foo --baz=help

Duncan Touts

default setting

setting
update

setting update

Compositional Settings

data ConfigFlags =
ConfigFlags \{
foo : : Flag Bool,
bar :: Flag PackageDB, baz :: [String]
\}

Compositional Settings

data ConfigFlags = ConfigFlags \{ foo : : Flag Boor,
bar :: Flag PackageD,
baz :: [String] \}

mempty $=$ Default

append f (Flag _) $=\mathrm{f}$
f 'mappend` Default $=\mathrm{f}$

Compositional Settings

instance Monoid ConfigFlags where mempty =

ConfigFlags

$$
\begin{aligned}
& \{\text { foo }=\text { mempty } \\
& \text {, bar }=\text { mempty } \\
& \text {, baz }=\text { mempty } \\
& \}
\end{aligned}
$$

c1 'mappend' c2 = ConfigFlags

$$
\begin{aligned}
& \{\text { foo }=\text { foo c1 }<>\text { foo c2 } \\
& \text {, bar }=\text { bar c1 }<>\text { bar c2 } \\
& \text {, baz }=\text { baz c1 }<>\text { baz c2 }
\end{aligned}
$$

Data Aggregation

class Foldable t where foldMap : : Monoid m
$=>(\mathrm{a}->\mathrm{m})$
-> (t a -> m)

Data Aggregation

> polymorphic collection class Foldable t where foldMap $: \begin{aligned}: & \text { Monoid } \mathrm{m} \\ => & (\mathrm{a}->\mathrm{m}) \\ -> & (\mathrm{t} \text { a }->\mathrm{m})\end{aligned}$

Data Aggregation

polymorphic collection
class Foldable t where
foldMap :: Monoid m
$=>(a->m)$
-> (t a -> m)

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
!or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
:all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
{minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
```


Data Aggregation

data Tree a
= Empty
| Fork (Tree a) a (Tree a)
instance Foldable Tree where
foldMap gen Empty
= mempty
foldMap gen (Fork 1 x r)
$=$ foldMap gen $l<>$ gen $x<>$ foldMap gen r

Data Aggregation

data Tree a
= Empty
| Fork (Tree a) a (Tree a)
instance Foldable Tree where
foldMap gen Empty
= mempty
foldMap gen (Fork 1 x r)
$=$ foldMap gen $l<>$ gen $x<>$ foldMap gen r
> sum (Fork (Fork Empty 5 Empty) 3 Empty)
8
> maximum (Fork (Fork Empty 5 Empty) 3 Empty)
5

Foldable/Traversable

 Proposal```
toList :: Foldable t => t a -> [a]
iand :: Foldable t => t Bool -> Bool
ior :: Foldable t => t Bool -> Bool
!any :: Foldable t => (a -> Bool) -> t a -> Bool
:all :: Foldable t => (a -> Bool) -> t a -> Bool
!sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
```


## Foldable/Traversable

## Proposal <br> aka Burning Bridges Proposal

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
!or :: Foldable t => t Bool -> Bool
!any :: Foldable t => (a -> Bool) -> t a -> Bool
:all :: Foldable t => (a -> Bool) -> t a -> Bool
isum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a m> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
```


## Foldable/Traversable

# aka Burning Bridges Proposal 



## Divide at Conquer

## Linear Processing



## Linear Processing

x1 <> (x2 <> (x3 <> x4))


## Linear Processing

## x1 <> (x2 <> (x3 <> x4))


x1 <> (x2 <> x34)

## Linear Processing

> x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)
x1 <> (x234)

## Linear Processing

> x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)
x1 <> (x234)
x1234

## Linear Processing

> x1 <> (x2 <> (x3 <> x4))

x1 <> (x2 <> x34)

$$
x 1<>(x 234)
$$

n-1 gate delays
x1234

## Linear Strategy

mconcat : : Monoid m => [m] -> m<br>mconcat $=$ foldr mappend mempty

## Parallel Processing

## Parallel Processing

(x1 <> x2) <> (x3 <> x4)

## Parallel Processing

$$
(x 1<>x 2)<>(x 3<>\text { x4) }
$$


x12 <> x34

## Parallel Processing

$$
(x 1<>x 2)<>(x 3<>\text { x4) }
$$

x12 <> x34
x1234

## Parallel Processing

$$
(x 1<>x 2)<>(x 3<>x 4)
$$


x12 <> x34
x1234
$\log n$ gate delays

## Parallel Strategy

pconcat : : Monoid m => [m] -> m
pconcat [] = mempty
pconcat $[x]=x$
 where
len $\quad=$ length $x s$
(ys', zs') = splitAt (len 'div` 2) xs
ys $\quad=$ pconcat ys'
zs $\quad=$ pconcat $z s^{\prime}$

## The List Monoid

## The List Monoid

class Monoid m where mempty : : m
mappend :: m -> m -> m
instance Monoid [a] where mempty $=$ [] mappend $=(++)$

## Equational Reasoning

## Left Unit Proof

mempty ‘mappend` ys

## Proof Style: <br> Equational <br> Reasoning

ys

$$
\begin{aligned}
& \text { ([] } \begin{array}{l}
\text { ++ ys }=\text { ys } \\
1(x: x s)++y s ~=~ x ~: ~ x s ~++~ y s ~
\end{array}
\end{aligned}
$$

## Left Unit Proof

> mempty 'mappend` ys
> $=\{-$ def. of mempty -$\}$

## Proof Style: <br> Equational <br> Reasoning

Ys

$$
\begin{aligned}
& \text { ([] } \begin{array}{l}
\text { ++ ys }=\text { ys } \\
1(x: x s)++y s ~=~ x ~: ~ x s ~++~ y s ~
\end{array}
\end{aligned}
$$

## Left Unit Proof

mempty ‘mappend` ys<br>$=\{-$ def. of mempty -$\}$<br>[] 'mappend` ys<br>=

## Proof Style: <br> Equational <br> Reasoning

ys

## Left Unit Proof

mempty ‘mappend` ys \(=\{-\) def. of mempty -\(\}\) [] 'mappend` ys
$=\{-$ def. of mappend -$\}$

## Proof Style: <br> Equational <br> Reasoning

ys

$$
\begin{aligned}
& \text { ([] } \begin{array}{l}
\text { ++ ys }=\text { ys } \\
1(x: x s)++y s ~=~ x ~: ~ x s ~++~ y s ~
\end{array}
\end{aligned}
$$

## Left Unit Proof

## mempty ‘mappend` ys

$=\{-$ def. of mempty -$\}$
[] 'mappend' ys
$=\{-$ def. of mappend -$\}$ [] ++ ys

## Proof Style: <br> Equational <br> Reasoning

ys

$$
\begin{aligned}
& \text { ([] } \begin{array}{l}
\text { +t ys }=\text { ys } \\
(x: x s)++y s ~=~ x ~: ~ x s ~++~ y s ~
\end{array}
\end{aligned}
$$

## Left Unit Proof

## mempty ‘mappend` ys

$=\{-$ def. of mempty -$\}$
[] 'mappend` ys
$=\{-$ def. of mappend -$\}$
[] ++ ys

## Proof Style:

Equational
Reasoning
$=\{-\operatorname{def}$. of $(++)-\}$ ys

$$
\begin{aligned}
& \text { ([] } \begin{array}{l}
\text { +t ys }=\text { ys } \\
(x: x s)++y s ~=~ x ~: ~ x s ~++~ y s ~
\end{array}
\end{aligned}
$$

## Right Unit Proof

## l ++ [] <br> = <br> 1



## Right Unit Proof



## Base Case: l = [ ]



## Base Case: l = [ ]

$$
\begin{aligned}
& {[]++[] } \\
&=\{-\operatorname{def} \cdot \text { of }(++)-\} \\
& {[] }
\end{aligned}
$$

## Proof Style: <br> Structural Induction <br> Equational Reasoning

$$
\begin{aligned}
& \text { [ }[\mathrm{l} \text { ++ ys }=\mathrm{ys} \\
& \mathrm{l}(\mathrm{x}: \mathrm{xs})++\mathrm{ys}=\mathrm{x}: \mathrm{xs}++\mathrm{ys}
\end{aligned}
$$

## Inductive Case: $1=\mathrm{x}: \mathrm{xs}$

 (x:xs) ++ []$=$

Proof Style: Structural Induction

## Equational Reasoning

## Inductive Case: $1=\mathrm{x}: \mathrm{xs}$

# Proof Style: 

 Structural Induction
## Equational Reasoning



## Inductive Case: $1=x: x s$

(x:xs) ++ []
$=\{-\operatorname{def}$. of $(++)-\}$

# Proof Style: Structural Induction 

## Equational Reasoning



## Inductive Case: $1=\mathrm{x}: \mathrm{xs}$

## (x:xs) ++ []

$=\{-$ def. of $(++)-\} \quad$ Proof Style: x : xs ++ []
x: xs

Structural
Induction +
Equational Reasoning


## Inductive Case: $1=\mathrm{x}: \mathrm{xs}$

## (x:xs) ++ []

$=\{-$ def. of $(++)-\} \quad$ Proof Style: x : xs ++ []
$=\{-$ ind. hypot. -$\}$ x: xs

Structural
Induction
Equational
Reasoning


## Associativity Proof

$$
\begin{aligned}
& \mathrm{xs}++(\mathrm{ys}++\mathrm{zs}) \\
= & (\mathrm{xs}++\mathrm{ys})++\mathrm{zs}
\end{aligned}
$$

# Proof Style: <br> Structural Induction <br> <br> Equational <br> <br> Equational <br> <br> Reasoning 

 <br> <br> Reasoning}

## Associativity Proof

$$
\begin{aligned}
& \mathrm{xs}++(\mathrm{ys}++\mathrm{zs}) \\
= & (\mathrm{xs}++\mathrm{ys})++\mathrm{zs}
\end{aligned}
$$

## Homework

# Proof Style: <br> Structural Induction 

## Equational <br> Reasoning

## The Free Monoid

## Monoid (Homo)morphism

a function between monoids
f : : M1 -> M2
such that:
f mempty $=$ mempty
and:

$$
f(x<>y)=f x<>f y
$$

## Monoid (Homo)morphism

a function between monoids
length : : [a] -> Int
such that:
length [] $=0$
and:
length $(x++y)=$ length $x+$ length $y$

## Free Monoid



## What is a Data.Foldable?

## T a

## What is a Data.Foldable?




## Monoids

$\star$ Simple concept from Algebra
$\star$ Ubiquitous in Haskell

* Cool Applications
$\star$ List is the Free Monoid

Next time: 5/5/2015


| Data | Recursion | CADTs | DSLs |
| :---: | :---: | :---: | :---: |
| Cenericity Schemes |  |  |  |
| C |  |  |  |
| Expression |  | Monads | Type |
| Problem |  | Families | Classes |
| Q |  |  |  |
| Lists <br> and <br> other <br> Conoids | Effect | Free |  |

## Join the Google Group Leuven Haskell User Group

