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Monoid Instance
class Monoid m where  
  mempty  :: m  
  mappend :: m -> m -> m

instance Monoid Int where  
  mempty  = 0  
  mappend = (+)
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Two Possible Instances

instance Monoid Bool where  
  mempty  = True  
  mappend = (&&)  
 
instance Monoid Bool where  
  mempty  = False  
  mappend = (||)

Can’t have two 
instances for the 

same type!!!
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instance Monoid All where  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Same Problem for Num
Sum a

Product a

Homework
Invent 10 more monoid 

structures for Int

Data.Monoid

Num a => a
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data ConfigFlags =  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    foo :: Flag Bool,
    bar :: Flag PackageDB,
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Compositional Settings
data ConfigFlags =  
  ConfigFlags {
    foo :: Flag Bool,
    bar :: Flag PackageDB,
    baz :: [String]
  }

data Flag a = Flag a | Default

instance Monoid (Flag a) where
  mempty = Default
  _ `mappend` f@(Flag _) = f
  f `mappend` Default    = f

right biased

2



Compositional Settings
instance Monoid ConfigFlags where
  mempty =  
    ConfigFlags  
      { foo = mempty  
      , bar = mempty  
      , baz = mempty  
      }
 
  c1 `mappend` c2  =  
    ConfigFlags  
     { foo = foo c1 <> foo c2  
     , bar = bar c1 <> bar c2  
     , baz = baz c1 <> baz c2  
     }

2
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Data.Foldable

toList  :: Foldable t => t a -> [a]
and     :: Foldable t => t Bool -> Bool
or      :: Foldable t => t Bool -> Bool
any     :: Foldable t => (a -> Bool) -> t a -> Bool
all     :: Foldable t => (a -> Bool) -> t a -> Bool
sum     :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem    :: (Foldable t, Eq a) => a -> t a -> Bool
…

class Foldable t where
  foldMap :: Monoid m  
          => (a -> m)  
          -> (t a -> m)
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Data Aggregation
3

data Tree a  
  = Empty  
  | Fork (Tree a) a (Tree a)  

instance Foldable Tree where
  foldMap gen Empty  
    = mempty  
  foldMap gen (Fork l x r)  
    = foldMap gen l <> gen x <> foldMap gen r



Data Aggregation
3

data Tree a  
  = Empty  
  | Fork (Tree a) a (Tree a)  

instance Foldable Tree where
  foldMap gen Empty  
    = mempty  
  foldMap gen (Fork l x r)  
    = foldMap gen l <> gen x <> foldMap gen r

> sum (Fork (Fork Empty 5 Empty) 3 Empty)  
8  
> maximum (Fork (Fork Empty 5 Empty) 3 Empty)  
5
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Data.Foldable

Foldable/Traversable 
Proposal

3

Prelude

toList  :: Foldable t => t a -> [a]
and     :: Foldable t => t Bool -> Bool
or      :: Foldable t => t Bool -> Bool
any     :: Foldable t => (a -> Bool) -> t a -> Bool
all     :: Foldable t => (a -> Bool) -> t a -> Bool
sum     :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem    :: (Foldable t, Eq a) => a -> t a -> Bool
…

In Prelude as of 
GHC 7.10

aka  
Burning Bridges 

Proposal
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Linear Strategy

mconcat :: Monoid m => [m] -> m
mconcat  =  foldr mappend mempty

Data.Monoid
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Parallel Strategy
pconcat :: Monoid m => [m] -> m
pconcat []  = mempty
pconcat [x] = x
pconcat xs  = (ys `par` zs) `pseq` (ys <> zs)  
  where
   len        = length xs
   (ys', zs') = splitAt (len `div` 2) xs
   ys         = pconcat ys'
   zs         = pconcat zs'
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The List Monoid

class Monoid m where  
  mempty  :: m  
  mappend :: m -> m -> m

instance Monoid [a] where  
  mempty  = []  
  mappend = (++)

Data.Monoid
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 [] ++ ys  
= {- def. of (++) -}  
 ys

Proof Style: 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Inductive Case: l = x:xs

[]     ++ ys  =  ys  
(x:xs) ++ ys  =  x : xs ++ ys
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= {- def. of (++) -}  
 x : xs ++ []  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Associativity Proof

[]     ++ ys  =  ys  
(x:xs) ++ ys  =  x : xs ++ ys

 xs ++ (ys ++ zs)  
=  
 (xs ++ ys) ++ zs

Proof Style: 
Structural 
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+ 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Associativity Proof

[]     ++ ys  =  ys  
(x:xs) ++ ys  =  x : xs ++ ys

 xs ++ (ys ++ zs)  
=  
 (xs ++ ys) ++ zs

Proof Style: 
Structural 
Induction

+ 
Equational 
Reasoning

Homework



The Free Monoid



Monoid (Homo)morphism
a function between monoids

f :: M1 -> M2

f mempty   = mempty  
 
 
f (x <> y) = f x <> f y

such that:

and:



length (x ++ y) = length x + length y

length [] = 0

length :: [a] -> Int

Monoid (Homo)morphism
a function between monoids

such that:

and:
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Free Monoid
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Free Monoid

A

M

gen [A]

\x -> [x]

mconcat . map gen
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What is a Data.Foldable?

T a

mconcat . map gen

[a]

toList

Data 
structures that 

support a  
list view!

m

foldMap gen

Data 
structures that 
support some

abstract 
nonsense?

(Potentially) 
more efficient



Summary



Monoids

★ Simple concept from Algebra

★ Ubiquitous in Haskell

★ Cool Applications

★ List is the Free Monoid
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