Lists and Other Monoids Tom Schrijvers

Leuven Haskell User Group

Dala	Recursion Schemes	CADTS		
Expression Problem	Monads	Type Families	Type Classes	
Lists and Other Monoids	Effect	Theorems		

Cala Canaricity	Recursion Schemes		
Expression Problem	Monads	Type Families	Classes
Lists and Other Monoids	Effect	Free	

Introduction to Monoids

Abstract Patterns

Abstract Patterns

A set

M

A binary operator

⊗: M × M → M

4
ingredients

A set M

A binary operator ⊗: M × M → M

4 ingredients

An element $\epsilon \in M$

A set A binary operator $\otimes : M \times M \to M$ M ingredients

An element $\epsilon \in M$

A set M

A binary operator ⊗: M × M → M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

ingredients

An element $\epsilon \in M$

A set M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

A binary operator ⊗: M × M → M

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

ingredients

An element $\epsilon \in M$

A set M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

A binary operator ⊗: M × M → M

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

ingredients

 $0 \in \mathbb{Z}$

An element $\varepsilon \in M$

A set M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

A binary operator ⊗: M × M → M

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

4 ingredients

Left Unit

$$\mathbf{\epsilon} \otimes \mathbf{x} = \mathbf{x}$$

 $0 \in \mathbb{Z}$

An element $\epsilon \in M$

A set M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

A binary operator ⊗: M × M → M

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

4 ingredients

 $\mathbf{\epsilon} \otimes \mathbf{x} = \mathbf{x}$

Right Unit

Left Unit

 $\mathbf{x} \otimes \mathbf{\varepsilon} = \mathbf{x}$

 $0 \in \mathbb{Z}$

An element $\epsilon \in M$

A set M

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

 $\mathbb{Z} = \{..., -1, 0, 1, ...\}$

 $0 \in \mathbb{Z}$

An element $\epsilon \in M$

A binary operator $\otimes : M \times M \rightarrow M$

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$

ingredients Left Unit

$$\mathbf{\epsilon} \otimes \mathbf{x} = \mathbf{x}$$

Right Unit

$$\mathbf{x} \otimes \mathbf{\varepsilon} = \mathbf{x}$$

Associativity

$$|x \otimes (y \otimes z)| = |(x \otimes y) \otimes z|$$

A set A binary operator $\otimes : M \times M \to M$ M 4 ingredients $\mathbf{\epsilon} \otimes \mathbf{x} = \mathbf{x}$ Left Unit Right Unit $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$ Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ An element 3 Properties $\epsilon \in M$

A set M

> A type M

A binary operator $\otimes : M \times M \to M$

4 ingredients

Left Unit

 $\epsilon \otimes x = x$

Right Unit

 $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$

Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$

3 Properties

An element $\epsilon \in M$

A set A binary operator $\otimes : M \times M \to M$ M A type M Int 4 ingredients $\epsilon \otimes x = x$ Left Unit Right Unit $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$ Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ An element 3 Properties $\epsilon \in M$

A set A binary operator $\otimes : M \times M \to M$ M A function A type $\otimes :: M \to M \to M$ M Int 4 ingredients $\mathbf{\epsilon} \otimes \mathbf{x} = \mathbf{x}$ Left Unit Right Unit $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$ Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ An element 3 Properties $\epsilon \in M$

A set A binary operator $\otimes : M \times M \rightarrow M$ M A function A type $\otimes :: M \to M \to M$ M (+) :: Int -> Int -> Int Int 4 ingredients Left Unit $\mathbf{\varepsilon} \otimes \mathbf{x} = \mathbf{x}$ Right Unit $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$ An element ε :: M Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ An element 3 Properties $\epsilon \in M$

4

ingredients

A set M

> A type M

Int

Int

An element ε :: M

An element $\epsilon \in M$

A binary operator $\otimes : M \times M \rightarrow M$

A function $\otimes :: M \to M \to M$

(+) :: Int -> Int -> Int

Left Unit

 $\mathbf{\varepsilon} \otimes \mathbf{x} = \mathbf{x}$

Right Unit

 $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$

Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$

4

ingredients

A set M

> A type M

Int

Int

An element ε :: M

An element $\epsilon \in M$

A binary operator $\otimes : M \times M \rightarrow M$

A function $\otimes :: M \to M \to M$

(+) :: Int -> Int -> Int

Left Unit

 $\mathbf{\varepsilon} \otimes \mathbf{x} = \mathbf{x}$

Right Unit

 $\mathbf{x} \otimes \mathbf{\epsilon} = \mathbf{x}$

Associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$

Monoid Type Class

Monoid Type Class

A type **M**

A type
M

class Monoid m where

class Monoid m where

A type M

An element ε :: Μ

class Monoid m where
 mempty :: m

A type M

An element ε :: Μ

class Monoid m where
 mempty :: m

A type **M**

An element ε :: M

A function $\otimes :: M \rightarrow M \rightarrow M$


```
class Monoid m where
```

mempty :: m

mappend :: $m \rightarrow m \rightarrow m$

A type **M**

An element ε :: Μ

A function $\otimes :: \mathbf{M} \to \mathbf{M} \to \mathbf{M}$


```
class Monoid m where
```

mempty :: m

mappend :: $m \rightarrow m \rightarrow m$

A type **M**

An element

ε :: M

A function $\otimes :: \mathbf{M} \to \mathbf{M} \to \mathbf{M}$

3 Properties


```
class Monoid m where
```

mempty :: m

mappend :: $m \rightarrow m \rightarrow m$

A type **M**

An element ε :: M

A function $\otimes :: M \to M \to M$

3 Properties


```
class Monoid m where
```

mempty :: m

mappend :: $m \rightarrow m \rightarrow m$

A type **M**

An element ε :: Μ

A function $\otimes :: \mathbf{M} \to \mathbf{M} \to \mathbf{M}$

3 Properties

(<>) = mappend

convenient binary operator

Monoid Instance

```
class Monoid m where
  mempty :: m
  mappend :: m -> m -> m

instance Monoid Int where
  mempty = 0
  mappend = (+)
```

Monoid for Bool?

```
class Monoid m where
  mempty :: m
  mappend :: m -> m -> m

instance Monoid Bool where
  mempty = ???
```

mappend = ???

```
instance Monoid Bool where
  mempty = True
  mappend = (&&)
```

```
instance Monoid Bool where
  mempty = True
  mappend = (&&)

instance Monoid Bool where
  mempty = False
  mappend = (||)
```

```
instance Monoid Bool where
mempty = True
mappend = (&&)

instance Monoid Bool where

mempty = False
mappend = (||)
```

What's in a name? that which we call a *Bool* By any other name would smell as sweet;

What's in a name? that which we call a *Bool* By any other name would smell as sweet;


```
newtype All = All { getAll :: Bool }
```

```
newtype Any = Any { getAny :: Bool }
```

```
newtype All = All { getAll :: Bool }
```


Both isomorphic to Bool

```
newtype Any = Any { getAny :: Bool }
```

```
newtype All = All { getAll :: Bool }
instance Monoid All where
  mempty = All True
  All x `mappend` All y = All (x && y)
newtype Any = Any { getAny :: Bool }
```

```
newtype All = All { getAll :: Bool }
instance Monoid All where
  mempty = All True
  All x \rightarrow mappend All y = All (x && y)
newtype Any = Any { getAny :: Bool }
instance Monoid Any where
  mempty = Any False
  Any x \rightarrow mappend \rightarrow Any y = Any (x | y)
```

```
newtype All = All { getAll :: Bool }
instance Monoid All where
  mempty = 11 True
  All x `map end`
                   Two non-conflicting
                                     && y)
                        instances
newtype Any Any { getAny :: Bool }
instance Monoid Any where
  mempty = Any False
  Any x \rightarrow mappend \rightarrow Any y = Any (x | y)
```

Same Problem for Num

Same Problem for Num

Homework
Invent 10 more monoid
structures for Int

Applications

The diagrams Package

Brent Yorgey

The diagrams Package

Brent Yorgey

The diagrams Package

Brent Yorgey

Compositional Settings

e.g., Command-Line Options:

--enable-foo --disable-foo --enable-foo --baz=help

Duncan Coutts

Compositional Settings

e.g., Command-Line Options:

--enable-foo --disable-foo --enable-foo --baz=help

Duncan Coutts

Compositional Settings

```
data ConfigFlags =
   ConfigFlags {
    foo :: Flag Bool,
    bar :: Flag PackageDB,
    baz :: [String]
}
```

Compositional Settings

data ConfigFlags =

```
ConfigFlags {
        foo :: Flag Bool,
        bar :: Flag PackageDB,
       baz :: [String]
!data Flag a = Flag a | Default
instance Monoid (Flag a) where
  mempty = Default
                                 right biased
    mappend f@(Flag) = f
  f `mappend` Default
```

Compositional Settings

```
instance Monoid ConfigFlags where
  mempty =
    ConfigFlags
      { foo = mempty
      , bar = mempty
      , baz = mempty
  c1 \geq mappend \leq c2 =
    ConfigFlags
     \{ foo = foo c1 <> foo c2 \}
     , bar = bar c1 <> bar c2
     , baz = baz c1 \iff baz c2
```


Data Aggregation

Data Aggregation

polymorphic collection

Data Aggregation

polymorphic collection

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
```

Data Aggregation

Data Aggregation

```
data Tree a
  = Empty
  | Fork (Tree a) a (Tree a)
instance Foldable Tree where
  foldMap gen Empty
    = mempty
  foldMap gen (Fork l x r)
    = foldMap gen l <> gen x <> foldMap gen r
> sum (Fork (Fork Empty 5 Empty) 3 Empty)
8
 maximum (Fork (Fork Empty 5 Empty) 3 Empty)
5
```


Foldable/Traversable Proposal

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
...
```


Foldable/Traversable

Proposal

aka
Burning Bridges
Proposal

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
...
```


Foldable/Traversable

Proposal

aka
Burning Bridges
Proposal

In Prelude as of GHC 7.10

```
toList :: Foldable t => t a -> [a]
and :: Foldable t => t Bool -> Bool
or :: Foldable t => t Bool -> Bool
any :: Foldable t => (a -> Bool) -> t a -> Bool
all :: Foldable t => (a -> Bool) -> t a -> Bool
sum :: (Foldable t, Num a) => t a -> a
product :: (Foldable t, Num a) => t a -> a
maximum :: (Foldable t, Ord a) => t a -> a
minimum :: (Foldable t, Ord a) => t a -> a
elem :: (Foldable t, Eq a) => a -> t a -> Bool
...
```

Divide & Conquer

x1 <> (x2 <> (x3 <> x4))

x1234

delays

Linear Strategy

```
mconcat :: Monoid m => [m] -> m
mconcat = foldr mappend mempty
```


(x1 <> x2) <> (x3 <> x4)

x12 <> x34

x12 <> x34

x1234

log n gate delays

Parallel Strategy

The List Monoid

The List Monoid

```
class Monoid m where
  mempty :: m
  mappend :: m -> m -> m

instance Monoid [a] where
  mempty = []
  mappend = (++)
```

Equational Reasoning

```
mempty `mappend` ys
```

Proof Style: Equational Reasoning

ys

```
[] ++ ys = ys

[(x:xs)] ++ ys = x : xs ++ ys
```

```
mempty `mappend` ys
= {- def. of mempty -}
```

Proof Style: Equational Reasoning

ys

```
||(x:xs)|| ++ ys = ys
|(x:xs)|| ++ ys = x : xs ++ ys
```

```
mempty `mappend` ys
= {- def. of mempty -}
[] `mappend` ys
=
```

Proof Style: Equational Reasoning

```
ys
```

```
|[] ++ ys = ys
|(x:xs) ++ ys = x : xs ++ ys
```

```
mempty `mappend` ys
= \{- def. of mempty -\}
 [] `mappend` ys
                              Proof Style:
= {- def. of mappend -}
                              Equational
                              Reasoning
 ys
        ++ ys = ys
  |(x:xs)| ++ ys = x : xs ++ ys
```

```
mempty `mappend` ys
= \{- def. of mempty -\}
 [] `mappend` ys
                              Proof Style:
= {- def. of mappend -}
                               Equational
                               Reasoning
 [] ++ ys
 ys
        ++ ys = ys
```

(x:xs) ++ ys = x : xs ++ ys

```
mempty `mappend` ys
= {- def. of mempty -}
  [] `mappend` ys
= {- def. of mappend -}
  [] ++ ys
= {- def. of (++) -}
  ys
```

Proof Style: Equational Reasoning

```
[] ++ ys = ys

[(x:xs) ++ ys = x : xs ++ ys]
```

Right Unit Proof

```
l ++ []
=
l
```

```
[x:xs] ++ ys = ys
[x:xs] ++ ys = x : xs ++ ys]
```

Right Unit Proof

```
1 ++ []
=
1
```

```
[x:xs] ++ ys = ys
[x:xs] ++ ys = x : xs ++ ys]
```

Base Case: l = []

```
[ ] ++ [ ]
=
[ ]
```

```
[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys
```

Base Case: l = []

```
[] ++ []
= {- def. of (++) -}
[]
```

```
[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys
```

```
(x:xs) ++ []
```

X:XS

```
[x:xs] ++ ys = ys
[x:xs] ++ ys = x : xs ++ ys]
```

```
(x:xs) ++ []
```

X:XS

```
Induction Hypothesis xs ++ [] = xs
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
```

```
(x:xs) ++ []
= {- def. of (++) -}
```

X:XS

```
Induction Hypothesis xs ++ [] = xs
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
```

```
(x:xs) ++ []
= {- def. of (++) -}
x : xs ++ []
```

```
Induction Hypothesis xs ++ [] = xs
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
```

```
(x:xs) ++ []
= {- def. of (++) -}
x : xs ++ []
= {- ind. hypot. -}
x:xs
```

```
Induction Hypothesis xs ++ [] = xs
[] ++ ys = ys
(x:xs) ++ ys = x : xs ++ ys
```

Associativity Proof

```
xs ++ (ys ++ zs)
=
(xs ++ ys) ++ zs
```

Proof Style:
Structural
Induction
+
Equational
Reasoning

```
[x:xs] ++ ys = ys
[x:xs] ++ ys = x : xs ++ ys]
```

Associativity Proof

```
xs ++ (ys ++ zs)
=
(xs ++ ys) ++ zs
Homework
```

Proof Style:
Structural
Induction
+
Equational
Reasoning

```
[] ++ ys = ys

[(x:xs) ++ ys = x : xs ++ ys]
```

The Free Monoid

Monoid (Homo)morphism

a function between monoids

```
f :: M1 -> M2
```

such that:

```
f mempty = mempty
```

and:

$$f(x \ll y) = f x \ll f y$$

Monoid (Homo)morphism

a function between monoids

```
length :: [a] -> Int
such that:
length [] = 0
```

and:

```
length (x ++ y) = length x + length y
```


Ta

Summary

Monoids

- ★ Simple concept from Algebra
- **★** Ubiquitous in Haskell
- **★** Cool Applications
- * List is the Free Monoid

Next time: 5/5/2015

Bala Genericity	Recursion Schemes		
Expression Problem	Monads	Type Families	Classes
Lists and other Monoids	Effect Handlers	Free	

	Cala Canaricity	Recursion Schemes	GADTS	
	Expression Problem	Monads	Type Families	Type Classes
"	Lists and other Monoids	Effect	Free	

Join the Google Group Leuven Haskell User Group