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Abstract
A long-standing problem in logic programming is how to cleanly
separate logic and control. While solutions exist, they fall short
in one of two ways: some are too intrusive, because they require
significant changes to Prolog’s underlying implementation; others
are lacking a clean semantic grounding. We resolve both of these
issues in this paper.

We derive a solution that is both lightweight and principled. We
do so by starting from a functional specification of Prolog based
on monads, and extend this with the effect handlers approach to
capture the dynamic search tree as syntax. Effect handlers then
express heuristics in terms of tree transformations. Moreover, we
can declaratively express many heuristics as trees themselves that are
combined with search problems using a generic entwining handler.
Our solution is not restricted to a functional model: we show how
to implement this technique as a library in Prolog by means of
delimited continuations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; D.1.6 [Programming Tech-
niques]: Logic Programming; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Graph and tree search
strategies

General Terms Languages

Keywords monads, effect handlers, free monad transformer, de-
limited continuations, logic programming, heuristic tree search

1. Introduction
One of the long standing problems in logic programming has been
to find a modular way of expressing search problems. Kowalski’s
slogan [21],

algorithm = logic+ control
captures the ideal, which is to achieve effective algorithms through
the clean separation of problem logic and control mechanism. The
programmer should only focus on the logic, while the system
provides the control. In practice, however, the control of Prolog
systems is often inadequate. As a work-around, programmers resort
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to intermixing and obscuring their logic with control heuristics
that make finding a solution feasible. Several different solutions
have been proposed to this problem. Some offer great flexibility
but abandon Prolog’s execution model altogether, while those that
remain faithful to Prolog offer rather limited expressive power. The
TOR approach [31, 34] constitutes the current state of the art in the
latter class of solutions: it is a light-weight library-based approach
that is easily portable to different Prolog systems. However, it suffers
from a major deficiency: it lacks proper semantic grounding, and so
requires intimate knowledge of the implementation in order to be
understood.

We resolve this deficiency by borrowing techniques from func-
tional programming—monads and effect handlers—to guide the de-
sign of a library that is both modular and based on sound principles.
Indeed, exploiting the synergy between the functional programming
and logical programming paradigms is essential for this work. Be-
cause mastery of both fields is not an easy task, this synergy is rarely
exploited. Yet, the cross-pollination of ideas solves problems that
are otherwise intractable. In this paper we champion such multi-
disciplinary work and present the full development of our solution
from its functional specification in Haskell to logic programming
implementation in Prolog, in order to bring both communities closer
together.

Monads [40] have firmly established their place in functional
programming as a practical solution to modelling computations that
involve side effects and that have a notion of sequentiality. Instances
of monads are abound, and much work has been done on reasoning
about monadic programs in terms of the monad’s implementation
details [16], where the concrete instance is of interest.

An emerging approach is to treat monads as an interface, whose
laws form a specification [11], which is closer to the formulation of
universal algebras as Lawvere theories [22]. Here the implementa-
tion is hidden and the monad is opaque or abstract. Programs cannot
exploit the monad’s implementation details, but are restricted to the
exposed interface.

In this paper we develop a technique to extend the opaque
monad that represents Prolog, in order to reason carefully about
nondeterminism and heuristics. An important ingredient of our
solution are effect handlers [1, 3, 18, 20, 24, 28]. They provide a
new approach to defining monads that cleanly separates syntax from
semantics, where a syntax tree is first built, and then interpreted in a
semantic domain using a handler. We combine these effect handlers
with the free monad transformer to model and extend an opaque
effectful language expressed in monadic style.

Our technical contributions are as follows:

• We show how to obtain modular search heuristics by means of
effect handlers, and, in particular, define an unusual entwine
handler that allows us to express search heuristics as archetypal
search trees much like TOR’s merge/2 combinator.



• We formulate a functional model that takes the feature-rich
nature of modern Prolog systems into account. Furthermore, we
use effect handlers and the free monad transformer to minimize
the footprint of both the model and the final solution.

• We explain carefully how to transfer our functional solution to
modular search heuristics to Prolog. This transfer involves a
non-trivial isomorphism between the free monad transformer
and the delimited continuation monad transformer.

• We demonstrate the superiority of the effect handlers approach
over TOR: effect handlers can express more search heuristics
than TOR. Moreover, while there is no obvious way to generalize
TOR from binary to multi-way disjunctions, effect handlers
support them with little effort.

Bringing specialist knowledge from one field into another is
not an easy task: experts in both domains are few and far between,
and so the details of the solution can be bewildering to those that
have not yet bridged the divide. However, translating the results
across the cognitive gap would have lost an important lesson: it
is only when both fields come together that such results are made
possible. Nevertheless, we have tried to make our material accessible
to readers with a rudimentary understanding of both fields.

2. The Challenge: Modular Search Heuristics
This section explains the need to direct Prolog’s control with

search heuristics, and formulates the challenge of doing so in a
modular fashion.

2.1 Depth-First Search
A Prolog program describes the logic of a problem in terms of the
non-deterministic choice operator (;)/2. In this way the program
implicitly describes a tree of possible paths to a solution, many
of which may lead to dead ends denoted by fail/0. This tree is
called the search tree and Prolog implements a search strategy that
traverses the tree to find the solutions.

In principle Prolog systems could use any search strategy to
explore the search tree. In this context, depth-first search (DFS)
and breadth-first search (BFS) can be seen as two extremes: DFS
can efficiently plumb the depths of complex structure, but might
get stuck in a part of the search space that does not lead to a
solution; BFS traverses branches evenly, but can be swamped by the
complexity of exponentially many options.

In practice Prolog systems are highly tuned for DFS: they exploit
special datastructures and algorithms for managing the interaction
between backtracking and unification. This is particularly true of
Prolog systems based on the Warren abstract machine (WAM) [41].

2.2 Search Heuristics
To compensate for the inflexibility of Prolog’s fixed DFS strategy,
various techniques have been proposed. This paper is concerned with
techniques that prune the search tree into a form that is more suitable
for solving with the fixed search strategy: these techniques remove
parts of the search tree that are less likely to yield (interesting)
solutions and where the search strategy would otherwise dwell for
too long. We name these pruning techniques search heuristics: they
do not fundamentally change the DFS order, but transform the search
tree that is being traversed.

The standard practice for adding search heuristics to solve a
problem is as follows. First the programmer writes the search
problem code without optimisation, such as the queens/2 program
in Figure 1.

Next, if the performance of the search strategy is not adequate,
the programmer selects a search heuristic to apply to the search
problem. For instance, the programmer decides to apply the depth-
bounded search strategy, which prunes parts of the search tree that

are too deep. Of course there is no manifest tree datastructure
to perform this pruning on; the search tree is only a conceptual
representation of the search program’s behaviour. Hence, applying
the search heuristic really means modifying the program to embody
a different tree.

Consequently, the programmer modifies the queens/2 program
to obtain queens2/3 in Figure 1, where we have highlighted the
required changes. This variant threads a bound on depth through the
computation. The bound is decremented at every branching, and,
when it hits zero, the branching is pruned.

2.3 The Challenge
Unfortunately, there are obvious problems with this approach to
search heuristics. Since the heuristic’s code is entangled with the
problem’s code, it is hard to modularly reuse either. Furthermore,
this entanglement encourages an error-prone and labour-intensive
copy-paste-modify approach. What we really want is a modular
approach where problems (i.e., the logic) and heuristics (i.e., the
control) can be defined separately and combined effortlessly.

The TOR approach [31, 34] constitutes the current state of the
art in solving this problem. With TOR the depth-bounded search
heuristic is expressed as an independent predicate dbs/2 and applied
to queens/2 as follows.

?- search(dbs(10,queens(8,Qs))).

The approach is based on using a hookable disjunction tor/2 to be
used by queens/2 instead of Prolog’s regular disjunction (;)/2.
The dbs/2 heuristic influences queen/2’s search by installing
appropriate call-backs in the hooks.

However, the hook-based approach lacks proper semantic
grounding. As a consequence, the approach lacks elegant alge-
braic properties that make its use predictable, in other words, its
use requires intimate knowledge of the implementation. Moreover,
the solution’s expressiveness is restricted. For instance, the com-
mon technique of visiting the branches of a disjunction in random
order cannot be expressed. Finally, TOR cannot be generalized to
multi-way disjunctions.

In this work we aim for a more general and elegant solution that is
based on proper semantic foundations. For this purpose we start from
a functional model of the problem in Haskell and apply established
techniques to solve the problem, then subsequently derive a practical
implementation for Prolog.

3. From Prolog to Haskell
In this section we present the functional model of Prolog that
will drive our developments. This already presents a first dilemma:
modern Prolog systems provide a large set of primitive operations,
the so-called built-ins. Incorporating all of these in our model would
be both extremely tedious and onerous. However, we also do not
want to oversimplify our model and run the risk of obtaining results
that do not work in actual Prolog systems.

We solve this dilemma with a standard functional programming
technique, abstract types. Instead of specifying a concrete repre-
sentation for Prolog computations, we assume the existence of an
abstract type:

data Prolog a

Values of this type represent Prolog computations, also known as
goals. As a small admission to functional programming, we will
assume that goals have a return value which is reflected in the type
variable a. Goals that return values of a particular type instantiate a
accordingly. Proper Prolog goals are of type Prolog (): they do not
return any value of interest, which is modelled by instantiating a
with the unit type ().



queens(N, Qs) :-
findall(C,between(1,N,C),L),
go(L,N,[],Qs).

go([],N,Qs,Qs).
go([X|Xs],N,Acc,Qs) :-

select(Y,[X|Xs],Ys),
noThreat(Acc,N,1),
go(Ys,N,[Y|Acc],Qs).

select(Y,[X|Xs],Ys) :-
( Y = X,

Ys = Xs
; Ys = [X|Zs],

select(Y,Xs,Zs)
).

queens2(N, Qs, DB) :-
findall(C,between(1,N,C),L),
go(L,N,[],Qs, DB).

go([],N,Qs,Qs, _).
go([X|Xs],N,Acc,Qs, DB) :-

select(Y,[X|Xs],Ys, DB, NDB),
noThreat(Acc,N,1),
go(Ys,N,[Y|Acc],Qs, NDB).

select(Y,[X|Xs],Ys, DB, NDB) :-
DB > 0,
( Y = X,

Ys = Xs,
NDB is DB - 1

; Ys = [X|Zs],
DB1 is DB - 1,
select(Y,Xs,Zs, DB1, NDB)

).

noThreat([],_,_).
noThreat([M|Ms],R,C) :- abs(M-R) =/= C, NC is C + 1, noThreat(Ms,R,NC).

Figure 1. The n-queens search problem: plain (left) and with depth bound (right, with changes highlighted in black).

We will assume that there are numerous ways to construct values
of type Prolog a. However, we deliberately do not attempt to model
them all and make no assumptions about how a Prolog goal is
constructed. For our own purposes, we restrict our vocabulary to no
more than four constructors (two primitives and two combinators)
to build new goals.

The first two of these can be summarized by saying that Prolog
has an instance of the monad class:

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

instance Monad Prolog

This means that Prolog supports a sequential composition operator
(>>=) and matching unit operator return. This notion of sequential-
ity closely corresponds to Prolog’s conjunction operation p , q,
which is satisfied when a solution exists for both p and q. In this
setting order matters, and expressions are executed from left to right.
More specifically p , q corresponds to p>>q, which is an instance
of >>= where the return value of p is of no interest to q.

p>>q = p>>=(λx→ q)

A computation can end in one of two ways: either the search for
a solution ends in success where the result is true, or in failure
in which case the result is false. The behaviour of true interacts
with the conjunction operator in the same way that return () behaves
with (>>), as described by the left and right unit laws of a monad:

return ()>>p = p = p>> return () (1)

Given this relationship, we identify true with return ().
To model false, we introduce the operation

fail :: Prolog a

This operation comes equipped with the left-zero law, which dictates
how fail interacts with the monadic bind:

fail>>=q = fail (2)

This is a perfect fit for false since in the setting of Prolog there is
no right-zero of conjunction: side-effects performed before failure
cannot be undone in general.

Haskell Prolog
return () true
fail false
p>>q p , q
p |||q p ; q

Table 1. Prolog model in Haskell

To model the disjunction p ; q, where either p or q must be
satisfied, we introduce the operation:

(|||) :: Prolog a→ Prolog a→ Prolog a

that satisfies the left-distributivity property:

(m |||n)>>= f = (m>>= f ) ||| (n>>= f ) (3)

Moreover, 〈Prolog a,(|||), fail〉 forms a monoid, where the following
laws must hold:

x ||| (y ||| z) = (x ||| y) ||| z (4a)
fail ||| x = x = x ||| fail (4b)

The relationship between our model and the syntax of logic
programming we are interested in is summarized in Table 1.

4. Background: Handlers and Transformers
Search heuristics are naturally expressed as transformations of
search trees. For instance, the depth-bounded search prunes all
subtrees below a given depth. Unfortunately, this view does not
fit well with our monadic model of Prolog as the Prolog monad is
opaque and we cannot observe the search tree structure of goals.
A more effective technique for observing the syntactic structure of
monadic programs is the effect handlers approach. This approach
will be key to expressing heuristics in a modular way.

Effect handlers decouple the syntax and the semantics of side-
effect primitives, which we call operations in the rest of the paper.
The syntactic operations themselves live in an abstract syntax tree,
which is modelled by the free monad. The semantics are captured in
so-called handler functions, or handlers for short, and we focus on
those that can be expressed as folds over the abstract syntax tree.



The decoupling has a number of advantages: it facilitates both
the modular definition of monads in terms of separately defined
operations, and also the assignment of different semantics to the
same syntax. In this paper we will add one more advantage to that
list: it allows us to extend opaque monads that have not necessarily
been defined in terms of the effect handlers approach with new
capabilities.

The well-known free monad f ? denotes abstract syntax trees
where the shape of the nodes is captured in the functor f .

data f ? a = Return a | Op (f (f ? a))

A new node of shape f and subtrees of type f ? a can be built with
the Op constructor. The Return constructor marks a non-terminal,
and (>>=) performs simultaneous substitution on all non-terminals
in the tree.

instance Functor f ⇒Monad (f ?) where
return a = Return a
Return a>>= f = f a
Op n >>= f = Op (fmap (>>=f ) n)

An important convention when using the free monad for modelling
syntax trees is that each node represents an operation and its
subtrees denote the possible continuations from that operation. In
this way, the free monad’s notion of substitution and the operational
interpretation of sequential composition both coincide in (>>=).

As an example, let’s consider an abstract syntax tree for expres-
sions involving only the operations in MonadState s m, where the
monad m uniquely determines the state s.

class Monad m⇒MonadState s m | m→ s where
get :: Monad m⇒ m s
put :: Monad m⇒ s→ m ()

This has two primitive operations, and the shape of the correspond-
ing syntax is given by the functor State s r.

data State s r
= Get (s→ r)
| Put s (()→ r)

instance Functor (State s) where
fmap f (Get k) = Get (f · k)
fmap f (Put s k) = Put s (f · k)

Thus, Op (Get k) is the syntactic representation of get>>= k and
Op (Put s k) for put s>>= k. If we want to represent the operations
by themselves without any relevant continuation, we just instantiate
k to return.

instance MonadState s ((State s)?) where
get = Op (Get return)
put s = Op (Put s return)

These operations construct syntax trees that represent actions.

4.1 The Free Monad Transformer
While the free monad approach forms an attractive basis for solving
our search heuristics problem, it is not very appealing to replace the
opaque Prolog monad with the free monad. After all, that would be
akin to throwing away our existing Prolog system and engineering
a new one from the ground up. Instead of this prodigious effort we
would much prefer a more lightweight solution.

This solution comes in the form of the free monad transformer f ?m,
which combines an existing monad m with the free monad f ? by
interleaving computations in m with syntactic operations from f .

newtype f ?m a = FreeT {unFreeT :: m (Free f a (f ?m a))}
data Free f a x = ReturnF a | OpF (f x)

instance Functor f ⇒ Functor (Free f a) where
fmap (ReturnF a) = ReturnF a
fmap f (OpF x) = OpF (fmap f x)

When the monad is Id there is no additional structure so:

f ? a = f ?Id a

In other words, f ? a is the fixpoint of Free f a.
The structure of f ?m requires m to be a monad, and f to be a

functor. We use this fact so often that we will use the following
convenient notation for the required type constraint synonym:

type ` f ?m = (Functor f ,Functor m,Monad m)

In other words, this constraint expresses that f ?m is a well-formed
free monad transformer.

We can define the fold over this structure:

fold :: ` f ?m⇒ (m (Free f a b)→ b)→ (f ?m a→ b)
fold alg = alg · fmap (fmap (fold alg)) ·unFreeT

This can be used to give a definition of (>>=) in the instance that
shows that f ?m is a monad.

instance ` f ?m⇒Monad (f ?m) where
return = FreeT · return ·ReturnF
m>>= f = fold (FreeT · join · fmap (unFreeT ·alg)) m

where alg (ReturnF a) = f a
alg (OpF op) = opF op

opF op = FreeT (return (OpF op))

The following definition of runStateF is an example of a handler
that turns eliminates the State syntax by interpreting it in terms of a
state that is threaded through the computation.

runStateF:: ` (State s)?m⇒ (State s)?m a→ s→ m (a,s)
runStateF p s0 = runFreeT (alg s0) p where

alg s (ReturnF x) = return (x,s)
alg s (OpF (Get k)) = runStateF (k s) s
alg s (OpF (Put s′ k)) = runStateF (k ()) s′

The above definition makes use of the following auxiliary definition:

runFreeT :: ` f ?m⇒ (Free f a (f ?m a)→ m b)→ (f ?m a→ m b)
runFreeT alg p = unFreeT p>>=alg

which runs the given computation upto the first syntactic operation,
which it delegates to alg. In the case of runStateF, this alg handles
the state operation appropriatley, and at the end of the computation
returns the result together with the final state.

In the remainder of the paper we will also make use of the
following variant of runFreeT:

step :: ` f ?m⇒ f ?m a→ (f (f ?m a)→ f ?m a)→ f ?m a
step t alg = FreeT (runFreeT alg′ t) where

alg′ (ReturnF x) = return (ReturnF x)
alg′ (OpF op) = unFreeT (alg op)

The function step differs in two ways from runFreeT . Firstly, it does
not promise to eliminate the syntactic operations altogether. Instead,
it can be used to eliminate only some operations or to replace them
by others. Secondly, step preserves ReturnF. As a consequence, the
alg parameter only needs to concern itself with the operations.

5. Heuristics as Handlers in Haskell
The machinery of effect handlers gives us the tools we need to
describe heuristics in a modular way. Our solution will be developed
in four steps.



5.1 Step 1: Overloading
Our first step is to overload the operations of Prolog. Here we
accomplish this with the MonadProlog type class:

class Monad m⇒MonadProlog m where
fail :: m a
(|||) :: m a→ m a→ m a

which inherits the left-zero and left-distributivity laws of Prolog,

fail>>=q = fail (5a)
(m |||n)>>= f = (m>>= f ) ||| (n>>= f ) (5b)

However, importantly, we do not require that 〈m a,(|||), fail〉
forms a monoid. This relaxation is crucial to support search heuris-
tics. After all, the monoid laws require that the shape of the search
tree is irrelevant. For instance, according to the associativity law, the
following two trees should be indistinguishable:

t1 = return x ||| (return y ||| return z)
t2 = (return x ||| return y) ||| return z

In contrast, the shape of the search tree is essential for search
heuristics. Different shapes of trees will be affected differently by
the same heuristic. For instance, the depth-bounded search heuristic
may prune the solutions y and z in t1, while it prunes x and y in t2.

5.2 Step 2: Introducing Syntax
We proceed in the second step by capturing the relevant operations
as syntax using the free monad transformer. While MonadProlog
provides two operations, fail and (|||), we will see in the next step
that we can get away with capturing only (|||) in syntax. This
comes at the cost of somewhat more complicated handlers. However,
Section 6 will bear out that keeping the syntactic footprint as small
as possible is a good idea.

Hence, the functor Or captures only p |||q with the syntax Or p q.

data Or x = Or x x
orF :: Monad m⇒ Or?m a→ Or?m a→ Or?m a
orF p q = opF (Or p q)
instance Functor Or where

fmap f (Or p q) = Or (f p) (f q)

Observe that unlike Get the constructor Or does not require a
separate field for the continuation. Thanks to the left-distributivity
property, we can express (p |||q)>>= k also as (p>>= k) ||| (q>>= k).

This data acts as a syntactic construction that gives us an instance
of MonadProlog in terms of the free monad transformer:

instance MonadProlog m⇒MonadProlog (Or?m) where
fail = lift fail
p |||q = orF p q

5.3 Step 3: Adding Heuristics
The syntactic Or gives substance to the search tree that is implic-
itly embodied by a computation. Now we can truly write search
heuristics as functions that transform this search tree.

type Heuristic m a = Or?m a→ Or?m a

Below we capture a number of well-known heuristics in this form.

Depth-Bounded Search The depth-bounded search heuristic
bounds the search tree to a given depth, pruning everything un-
derneath.

dbs :: MonadProlog m⇒ Int→ Heuristic m a
dbs 0 t = fail
dbs n t = step t alg where

alg (Or x y) = (dbs (n−1) x) ||| (dbs (n−1) y)

Here we see our first use of the step function. It is used to decrement
the depth bound at every Or. When the limit is exceeded, the whole
remaining computation is replaced by failure.

Discrepancy-Bounded Search Discrepancy-bounded search is a
minor variant of depth-bounded search that bounds the number of
right turns.

dibs :: MonadProlog m⇒ Int→ Heuristic m a
dibs 0 t = fail
dibs n t = step t alg where

alg (Or x y) = (dibs n x) ||| (dibs (n−1) y)

Node-Bounded Search The node-bounded search heuristic limits
the number of nodes that are visited during the search, pruning any
further nodes that come up. Like many other search heuristics, it
maintains some state across the different branches of the search tree:
the maximum number of nodes that it can still visit before starting
to prune.

The implementation of node-bounded search in Prolog requires
the use of mutable references.1 We can capture such references in
our model by using the type class MonadRef . This supports three
operations: newRef creates a new reference r a within the monadic
context m, readRef extracts a value from a reference into the context,
and writeRef takes a reference and a value a, and writes the value
into the reference.

class Monad m⇒MonadRef r m | m→ r where
newRef :: a→ m (r a)
readRef :: r a→ m a
writeRef :: r a→ a→ m ()

To illustrate the use of this interface, we implement modifyRef ,
which simply modifies the current value in some cell by applying a
function f to its contents, and then returns the original value.

modifyRef :: MonadRef r m⇒ r a→ (a→ a)→ m a
modifyRef r f = do x← readRef r

writeRef r (f x)
return x

This works by first reading the value x contained in the reference,
writing the new value f x to the reference, and then returning x.

In addition to the usual properties of mutable references, we also
explicitly stipulate the interaction with backtracking: the writes are
not backtracked over.

writeRef ref x>> (p |||q) = (writeRef ref x>>p) |||q (6)

Read from left to right this law expresses that writes in the left
branch are also seen by the right branch. Contrast this with the
characterization of backtracking behaviour:

writeRef ref x>> (p |||q)
=

(writeRef ref x>>p) ||| (writeRef ref x>>q)

which expresses that writes in one branch are not seen by the other
branch.

The support for references can be lifted straightforwardly from
m to Or?m.

instance MonadRef r m⇒MonadRef r (Or?m) where
newRef x = lift (newRef x)
readRef r = lift (readRef r)
writeRef r x = lift (writeRef r x)

1 See Schrijvers et al. [34, Appendix A] for a Prolog implementation of
mutable references.



This support enables us to express a handler for node-bounded
search.

nbs :: (MonadProlog m,MonadRef r m)⇒ Int→ Heuristic m a
nbs n t = newRef n>>=go t where

go t′ ref = step t′ alg where
alg (Or x y) = do n← modifyRef ref pred

guard (n>0)
go x ref |||go y ref

Failure-Bounded Search Failure-bounded search terminates the
search when too many paths in the tree lead to dead ends. It may
actually seem surprising that we can write this heuristic without
being able to explicitly observe failure. Nevertheless, with a clever
trick that relies on the underlying DFS we can observe failure
indirectly.

fbs :: (MonadProlog m,MonadRef r m)⇒
Int→ Heuristic m a

fbs n t = do ref ← newRef n
fref ← newRef False -- (a)
x← go ref fref t
writeRef fref True -- (b)
return x where

go ref ′ fref ′ t′ = step t′ alg
where alg (Or x y) = x |||

(do b← modifyRef fref ′ (const False) -- (c)
when (¬ b) -- (d)

(do n← modifyRef ref ′ pred
guard (n>0))

y)

The mutable reference fref expresses whether the last explored path
has terminated successfully. At the start of the search (a), we are on
the first path but have not completed it yet. Hence initially fref holds
the value False. Later, when a solution is found (b), the value True
is written into the reference. After completing a path successfully or
unsuccessfully, the search backtracks into the right branch of an or.
At the start of the right branch (c) we can observe in fref whether
the previous path was successful or not. We also write False into
fref to capture the status of the new path we are on. If the previous
path has failed (d), we subtract one from the failure bound and prune
if we have failed too often already.

5.4 Step 3′: Adding Heuristics as Trees
The effect handlers approach distinguishes syntactic operations
and handlers. Syntactic operations offer the flexibility of a deeply
embedded domain-specific language (DSL); they can be freely
analyzed, manipulated and interpreted in different ways. This is
exactly the property we have put to good use with the definition of
heuristics over search trees. In contrast, handlers like our heuristics
are akin to a shallow embedding of a DSL: they can be used in one
way only, by function application to a computation.

In this section we show how to recover much of the flexibility of
deep embeddings, while simultaneously providing a more structured
approach to defining search heuristics. This approach is based on
two ingredients:

1. We capture the essence of a heuristic in an archetypal search
tree. For instance, the archetypal search tree for depth-bounded
search is a perfect binary tree of depth n with failures at its
leaves.

dbsTree 0 = fail
dbsTree n = dbsTree (n−1) |||dbsTree (n−1)

2. We apply the heuristic to a search problem by means of an
operator (.) called entwine, that combines two search trees: in
this case, one given by the logic to solve the problem, and the
other given by the heuristic.
For instance, we recover dbs as follows:

dbs′ :: MonadProlog m⇒ Int→ Heuristic m a
dbs′ db t = dbsTree db . t

In summary, this approach refines Kowalski’s slogan to:

algorithm = control . logic

where both logic and control are expressed in a declarative rather
than an operational style. Moreover, they are expressed in the same
language of search trees.

The Entwining Operator The (.) operator is similar to the defi-
nition of the zip operation: zipping two lists truncates the longer one
when their structure disagrees. Similarly, entwining two trees trun-
cates the larger one when their structure disagrees. The truncation
of trees is essentially the pruning of the search space.

(.) :: (MonadProlog m)⇒ Or?m a→ Or?m a→ Or?m a
p . q = p ‘step‘ (λ (Or x1 x2)→

q ‘step‘ (λ (Or y1 y2)→
(x1 . y1) ||| (x2 . y2)))

This operation steps into the first tree, and inspects its structure for
an Or constructor. When this is found, it steps into the second tree
where it again inspects its structure for an Or constructor. If both
are found, then a new tree is constructed, where children of the trees
are entwined together.

Note that 〈Or?m a,(.), inf 〉 forms a monoid, because (.) is
associative and the infinitely branching tree inf is its identity:

inf :: Monad m⇒ Or?m a
inf = opF (Or inf inf )

Archetypal Trees and Handlers We can establish that dbsTree n
captures the essence of the dbs handler in an archetypal tree by
showing that dbs n and dbs′ n are equivalent. Our proof proceeds by
induction on n.

For n = 0 we have that:

dbs 0 t

= { def. of dbs }
fail

= { ∀alg.step fail alg = fail }
fail ‘step‘ (λ (Or x1 x2)→
t ‘step‘ (λ (Or y1 y2)→ (x1 . y1) ||| (x2 . y2)))

= { def. of (.) }
fail . t

= { def. of dbsTree }
dsbTree 0 . t

= { def. of dbs′ }
dbs′ 0 t



dibs′ :: (MonadProlog m)⇒ Int→ Heuristic m a
dibs′ db t = dibsTree db . t where

dibsTree 0 = fail
dibsTree n = dibsTree n . dibsTree (n−1)

nbs′ :: (MonadProlog m,MonadRef r m)⇒
Int→ Heuristic m a

nbs′ n t = do ref ← newRef n
t . nbsTree ref where

nbsTree ref = do n← modifyRef ref pred
guard (n>0)
nbsTree ref |||nbsTree ref

fbs′ :: (MonadProlog m,MonadRef r m)⇒ Int→ Heuristic m a
fbs′ n t = do ref ← newRef n

fref ← newRef False
x← t . fbsTree ref fref
writeRef fref True
return x where

fbsTree ref fref = fbsTree ref fref |||
do b← modifyRef fref (const False)

when (¬ b) (do n← modifyRef ref pred
guard (n>0))

fbsTree ref fref

Figure 2. Search heuristics expressed as entwined trees

Also, for n = m+ 1 and induction hypothesis dbs m = dbs′ m,
we can show that:

dbs (m+1) t

= { def. of dbs }
step t (λ (Or y1 y2)→ (dbs m y1) ||| (dbs m y2))

= { induction hypothesis }
step t (λ (Or y1 y2)→ (dbs′ m y1) ||| (dbs′ m y2))

= { def. of dbs′ }
step t (λ (Or y1 y2)→ (dbsTree m . y1) ||| (dbsTree m . y2))

= { ∀alg t1 t2.alg (Or t1 t2) = step (t1 ||| t2) alg }
(dbsTree m |||dbsTree m) ‘step‘ (λ (Or x1 x2)→
t ‘step‘ (λ (Or y1 y2)→ (x1 . y1) ||| (x2 . y2)))

= { def. of . }
(dbsTree m |||dbsTree m) . t

= { def. of dbsTree }
dbsTree (m+1) . t

= { def. of dbs′ }
dbs′ (m+1) t

Modular Definition of Heuristics Figure 2 shows that there is an
archetypal search tree hidden in all the heuristics of Section 5.4. Yet,
the main advantage of archetypal search trees is that we can define
them in a convenient modular style.

For instance, we can define dbsTree n as delay n>> fail, where
delay returns return () after a given depth:

delay :: MonadProlog m⇒ Int→ Or?m ()
delay 0 = return ()
delay n = delay (n−1) |||delay (n−1)

Here, return () is a placeholder for another heuristic that can be
plugged in with (>>) and becomes active at depth n in the search
tree.

This allows us to define iterative deepening as follows:

itd :: (MonadProlog m,MonadRef r m)⇒ Heuristic m a
itd t = do newRef False>>=go t 0 where

go t n ref = (t . (delay n>>prune ref )) |||
do b← readRef ref

if b then do writeRef ref False
go t (n+1) ref

else fail
prune ref = writeRef ref True>> fail

Iterative deepening itd repeatedly runs a depth-bounded search,
incrementing the depth bound on each iteration. The iterative
process stops when no pruning happened in the last iteration. The
heuristic prune ref performs immediate pruning and records this
in the mutable reference to remember it across backtracking. With
delay n>>prune ref the immediate pruning is delayed to depth n.

While TOR [34] provides an operator merge/2 similar to (.),
that operator does not satisfy the same elegant algebraic properties
(e.g, forming a monoid) and, as consequence, cannot express
delayed heuristics in this modular fashion.

Limitation While (.) is very convenient and captures a large class
of search heuristics, not all heuristics can be expressed in this way.
In particular, consider the random reordering of branches,

muddle :: (MonadRandom m,MonadProlog m)⇒ Heuristic m a
muddle t = step t alg where

alg (Or x y) = do b← getRandom
if b then muddle x |||muddle y

else muddle y |||muddle x

which is a popular heuristic to randomize the search tree. This
heuristic cannot be expressed with (.) because it always keeps left
branches on the left and right branches on the right.

5.5 Step 4: Reflecting Syntax Back into Semantics
Finally, the semOr handler reflects the syntactic Or back into the
semantic (|||) of the underlying monad m.

semOr :: MonadProlog m⇒ Or?m a→ m a
semOr = runFreeT alg where

alg (ReturnF a) = return a
alg (OpF (Or x y)) = semOr x ||| semOr y

We can now recover queens′ as:

queens′′ n db = semOr (dbs db (queens n))

provided that queens is written against the type class MonadProlog
rather than the opaque monad Prolog.

In this scheme, we start with the original tree generated by
queens, but interpreted under the Or?m monad. The ensuing tree
is then pruned by the function dbs before it is finally reflected back
into the underlying monad m.

6. From Haskell to Prolog
This section sets up the means to transfer our Haskell-based solution
for modular search heuristics to Prolog.



On the outset, there are several compelling reasons why basing
our approach on the free monad transformer would make it well-
suited for implementation in Prolog:

1. In the Or?m type, we can choose m to be the complex (but implicit)
monad that underpins Prolog.

2. The approach allows us to conveniently reuse Prolog’s primitive
implementations for return () and fail by lifting.

3. We can lift individual feature extensions that we have modelled
as additional class constraints, such as mutable references and
random number generation. This could be applied to other ex-
tensions we have not covered explicitly in our model: predicates
(i.e., goal abstractions), mutable databases, I/O, and many more.

However, implementing the free monad transformer itself in Prolog
is challenging. As the Prolog monad is implicit in the Prolog
language, it does not lend itself to transformation. So we now direct
our efforts to overcoming this obstacle.

6.1 Meta-Interpreter
Meta-circular interpreters, or just meta-interpreters, are the most
common way of modelling Prolog language extensions in Pro-
log. The signature of a plain Prolog meta-interpreter is eval/1,
where eval(Goal) conceptually denotes the type m (). How-
ever, our meta-interpreter needs to capture computations of type
m (Free Or () (Or?m ())). Hence, we extend the interpreter’s signa-
ture with an extra (output) argument: eval(Goal,Flag). Flag is
either return (corresponding to Return ()) or or(Goal1,Goal2)
(corresponding to opF (Or g1 g2)).

With this signature it is straightforward to port the free monad
transformer implementation to Prolog (see Figure 3). However, this
meta-interpreter requires us to reify all of the syntax in Prolog which
we are interested in. For our small fragment this is very manageable,
but there are many other features in Prolog, such as built-ins and
user-defined predicate calls, and with a growing list, this approach
will soon become tedious and unmaintainable. We clearly need an
approach that is orthogonal to the existing language features.

6.2 Delimited Continuations
We do not have to look very far for an alternative approach. Delim-
ited continuations provide an isomorphic replacement of the free
monad transformer. An approach based on delimited continuations
is more Prolog-friendly because recent work [32] has made them
available natively in the hProlog [7] system.

Prolog provides an idiosyncratic interface of two operators
for capturing delimited continuations: shift/1 and reset/3 that
generalize exceptions, which are conventionally modelled by:2

class Monad m⇒MonadDelCont f m | m→ f where
shiftP :: f b→ m b
resetP :: m a→ (a→ m b)→

(Susp f (m a)→ m b)→ m b

These operations can be seen as a generalization of throw and
catch from the well-known error monad. Like throw, the shiftP
operation terminates the ongoing computation abruptly, with a value
that indicates the reason. Like catch, the resetP operation makes it
possible to observe whether a subcomputation terminates normally
or abruptly.

The big difference between both interfaces is that catch only
exposes the reason for the abrupt termination. In contrast, resetP
gives us, nicely packaged up in a Susp(ension), both the reason (as

2 Note that these control operators are have different signatures and semantics
than those originally introduced by Danvy and Filinski under those names [6].
They are more closely related to Sitaram’s fcontrol and run operators [36].

semOr (Goal) :-
eval(Goal,Flag),
( Flag = return ->

true
; Flag = or(G1,G2) ->

( runT(G1)
; runT(G2)
)

).

eval(Goal,Flag) :-
( Goal = fail ->

fail
; Goal = true ->

Flag = return
; Goal = (Goal1,Goal2) ->

eval(Goal1,Flag1),
( Flag1 = return ->

eval(Goal2,Flag)
; Flag1 = or(Left,Right) ->

Flag = or((Left,Goal2),(Right,Goal2))
)

; Goal = (Goal1;Goal2) ->
Flag = or(Goal1,Goal2)

; Goal = entwine(Goal1,Goal2) ->
eval(Goal1,Flag1),
( Flag1 = return ->

Flag = return
; Flag1 = or(Left1,Right1) ->

eval(Goal2,Flag2),
( Flag2 = return ->

Flag = return
; Flag2 = or(Left2,Right2) ->

eval((entwine(Left1,Left2)
;entwine(Right1,Right2)
),Flag)

)
)

).

Figure 3. Prolog meta-interpreter

a value of type f a), and the unfinished part (the continuation given
by a→ r) of the subcomputation.

data Susp f r where
S :: f a→ (a→ r)→ Susp f r

instance Functor (Susp f ) where
fmap f (S d r) = S d (f · r)

Note that the type of the reason f a is indexed by the type a expected
by the continuation a→ r.

The resetP and shiftP control operations satisfy a number of laws
that regulate their interaction.

resetP (shiftP d>>= f ) r h = h (S d f ) (7a)
resetP (return x) r h = r x (7b)

The first law shows that a shift under a reset is handled by h, which
has access to the suspended computation. The second law shows
that the result of a successful computation under a reset is handled
by r, which has access to the result.

6.3 The Delimited Continuations Transformer
An instance of MonadDelCont can be obtained from any monad m
by making use of the delimited continuations monad transformer,
written f †

m a, and this will serve as our replacement for the free
monad transformer that fits the functionality exposed by Prolog.



newtype f †
m a = DCT {runDCT ::∀r.(a→ m r)→

(Susp f (f †
m a)→ m r)→ m r}

Its representation takes two continuations, the return continu-
ation of type a → m r, and the handler continuation of type
Susp f (f †

m a)→ m r.
The transformed monad’s return method invokes the return

continuation, and its (>>=) extends both continuations:

instance Monad m⇒Monad (f †
m) where

return x = DCT (λ r h→ r x)
m>>= f = DCT (λ r h→

runDCT m (λx→ runDCT (f x) r h) (h · fmap (>>=f )))

The resetP method sets the handler continuation and the shiftP
method invokes it.

instance Monad m⇒MonadDelCont f (f †
m) where

resetP m r h = DCT (λ r′ h′→
runDCT m (λx→ runDCT (r x) r′ h′)

(λp→ runDCT (h p) r′ h′))
shiftP d = DCT (λ r h→ h (S d return))

6.4 The Isomorphism
We will now establish the relationship between the free monad
transformer and the delimited continuations monad transformer.
This will enable us to adapt our existing infrastructure formulated
in terms of the former to Prolog-compatible infrastructure in terms
of the latter.

For all intents and purposes the two transformers are isomorphic,
but there are two significant technical wrinkles that must be ironed
out before formally establishing this isomorphism.

First, we must enforce that the base functor f of the delimited
continuation transformer is only applied to monadic values. These
values are after all meant to be the continuations of the syntactic
operations. We can impose this restriction by pre-composing f with
the monad and thus use f ‡

m instead of f †
m.

data f ‡
m a = L {runL :: (f ◦ f ‡

m)
†
m a}

where (◦) is the well-known functor composition:

data (f ◦g) a = Comp {runComp :: f (g a)}
Second, the suspension S s k breaks up a continuation into two

parts: one part that sits under the syntactic construction s, and
another part k that represents the following execution. Consequently,
continuations that have been broken up at different points are
distinguishable. However, if we are careful to always treat these
parts as one atomic continuation, then this does not pose a problem.
We can enforce this atomic treatment by normalize-ing all f ‡

m a
computations.

normalize:: ` f ?m⇒ f ‡
m a→ f ‡

m a
normalize m =

L (DCT (λ r h→ runDCT (runL m) r (h ·norm)))
where

norm (S x k) =
S ((Comp · fmap join · runComp · fmap (L · k)) x) return

Taking the above two points into consideration we can formulate
the two witnesses of the isomorphism:

to:: ` f ?m⇒ f ?m a→ f ‡
m a

to m = L (DCT (λ r h→
do x← unFreeT m

case x of
ReturnF a→ r a

Haskell Prolog
Left () K = 0
Right (S d k) K = JkK, D = JdK

Table 2. Interpretation of delimited continuations in Prolog

OpF s → h (S (Comp (fmap to s)) return)))

from:: ` f ?m⇒ f ‡
m a→ f ?m a

from m = FreeT (runDCT (runL m) r h) where
r = return ·ReturnF
h = return ·OpF · fmap from · collapse
collapse (S s k) = fmap (>>=L · k) (runComp s)

These two functions indeed witness the isomorphism when quo-
tiented by normalize:

from · to = id (8)
normalize · to · from = normalize (9)

Finally, using the isomorphism it is possible to derive that the f ‡
m

equivalent of opF can be defined simply as:

opF′ s = shiftP s

In other words, a syntactic operation can be modelled directly in
Prolog using shift/1.

Similarly, we can derive the counterpart of step as:

step′ m h = resetP m return h

With opF′ and step′ we have all we need to make the transition
from Haskell to Prolog.

7. Heuristics as Handlers in Prolog
Finally, we have a Prolog-friendly approach that is both light-weight
and enables a mostly native execution of search problems.

7.1 Delimited Continuations
The actual Prolog interface to delimited continuations is as follows:
The built-in predicate shift(D ) corresponds to shiftP t. The resetP
operation has signature reset(P,K,D ), which corresponds more
or less to

resetP :: M ()→M (Either () (Susp f (M ())))
resetP p (return ·Left) (return ·Right)

The input argument is the computation P and the other two argu-
ments encode in an untyped way the output, as is shown in Table 2.

7.2 The entwine/2 Infrastructure
With the help of the delimited continuation primitives, we can
implement the infrastructure for entwine/2 in Prolog, which
corresponds to the (.) operation.

Since Prolog does not allow us to override the disjunction
primitive (;)/2, we are forced to use a new name, or/2, for
expressing its syntactic form.

or(G1, G2) :- shift(or(G1, G2)).

Prolog’s plain disjunction (;)/2 remains available, allowing pro-
grammers to choose between disjunction that can be observed by
our framework, and that which cannot. Capturing and handling of
syntactic disjunctions is implemented with reset/3.

step(G, Pattern, Handler) :-
reset(G, K, D),
( K = 0



-> true
; D = or(G1, G2),

Pattern = or((G1, K), (G2, K)),
call(Handler)

).

This enables a straightforward port of the (.) implementation:

entwine(G1, G2) :-
step(G1, or(GL1, GR1),
step(G2, or(GL2, GR2),
or(entwine(GL1, GL2), entwine(GR1, GR2)))).

Finally, the reflection of toplevel syntactic disjunctions into
Prolog’s original disjunction is handled by semOr/1:

semOr(G) :-
step(G, or(G1, G2), (semOr(G1) ; semOr(G2))).

While the meta-interpreter must cater for all features in the
languages, this delimited continuations-based approach is nicely
orthogonal to other features. The code is substantially shorter
and clearly requires less maintenance. Moreover, even though raw
performance is not the main objective, this approach is almost 3
times faster than the meta-interpreter on search intensive code that
does not use (.).

A small caveat is in order: In our Haskell model we expect that
the following property holds for p :: MonadProlog m⇒ m a:

p = semOr p

The Prolog equivalent of this statement is only true if the program-
mer avoids calling or/2 inside a small subset of Prolog’s control
operations like Prolog’s special catch/3. Fortunately, this require-
ment is generally not a heavy burden when solving search problems.

7.3 Search Heuristics
Now that we implemented the entwining infrastructure in Prolog, it
is possible to define well-known search heuristics in the same con-
cise and high-level style as in Haskell. As an example, the following
Prolog code implements the depth-bounded search heuristic:

dbs(Depth,Goal) :- entwine(Goal,dbs(Depth)).

dbs(Depth) :-
Depth > 0,
Depth1 is Depth - 1,
( dbs(Depth1) or dbs(Depth1) ).

We have also implemented other heuristics such as discrepancy-
bounded, node-bounded and failure-bounded search, as well as
limited discrepancy search, iterative deepening, and branch-and-
bound.3

As we have remarked in Section 5.4, not all search heuristics can
be expressed in terms of entwine/2. Fortunately, we can still write
custom handlers. One such handler is muddle/1:

muddle(G) :-
step(G, or(GL, GR),

( random(2) > 0
-> or(muddle(GL),muddle(GR))
; or(muddle(GR),muddle(GL))
)).

This handler cannot be expressed with TOR’s hookable disjunc-
tion [34], because its hooks only manipulate the branches individu-
ally and not the disjunction as a whole.

3 http://users.ugent.be/~bdsouter/heuristics.html

7.4 Multi-Way Disjunctions
A final limitation of TOR [34] is that it does not support multi-way
(i.e., n-ary) disjunctions. These are useful to express for instance
that all the alternatives generated by a call to select/3 are at the
same level in the search tree and thus should be treated equally by
depth-bounded search.

With the effect handlers approach, multi-way disjunction can
easily be expressed as a generalization of binary disjunctions: the
multi-way disjunction predicate mor/1 takes a list of goals rather
than two goals.

mor(Gs) :- shift(mor(Gs)).

mstep(G, Pattern, Handler) :-
reset(G, K, D),
( K = 0
-> true
; D = mor(Gs),

maplist(extend(K),Gs,EGs),
Pattern = mor(EGs),
call(Handler)

).

extend(K,G,(G,K)).

A multi-way disjunction can be interpreted in terms of Prolog’s
binary disjunction.

semMor(G) :- mstep(G, mor(Gs), alts(Gs)).

alts([]) :- fail.
alts([G|Gs]) :- (G ; alts(Gs)).

However, first we can apply heuristics, like depth-bounded
search. While it is not obvious how to extend entwine/2 to multi-
way disjunctions, it is easy enough to write regular handlers.

mdbs(DB,G) :-
mstep(G,mor(Gs),

(DB > 0,
NDB is DB - 1,
maplist(mdbs_rec(NDB),Gs,NGs),
mor(NGs))).

mdbs_rec(DB,G,mdbs(DB,G)).

8. Related Work
8.1 Search
FP Models of LP Spivey’s algebraic model of logic program-
ming’s combinatorial search [37] is very similar to MonadProlog.
The model was first described by Seres et al. [35] as a way to allow
both depth-first and breadth first strategies.

It has long been known that Prolog-like features can be embedded
in Haskell using monads and monad transformers. For instance,
Hinze [14] provides the equivalent of MonadProlog as well as a
pruning primitive once. We can implement this using (.).

Hinze [15] has also derived a backtracking monad transformer
using the techniques of term and context passing. Both are system-
atic ways to derive a program implementation from its specification.
The technique thus builds on the laws one imposes on the monad at
hand to eliminate the need for a deus ex machina.

Kiselyov et al. [19] derive two implementations of a backtracking
monad transformer. The first manages continuations explicitly, while
the second does this implicitly using delimited control operations.
Unlike our work, their monad transformer provides several extra
operations, among which are fair conjunctions and disjunctions, and
allows selecting an arbitrary number of answers.

http://users.ugent.be/~bdsouter/heuristics.html


Erwig [9] compares Prolog and Haskell-style approaches to
solving search problems. He argues that the Haskell style (which
comprises lazy evaluation, static typing and multi-parameter type
classes) is better suited. However, search heuristics do not feature.

Functional Logic Programming Typically, Functional Logic Pro-
gramming (FLP) systems support nondeterminism in the same way
as Prolog, with a fixed depth-first search strategy. In order to provide
more flexibility, various FLP researchers [4, 23] have investigated
encapsulated search. Encapsulated search reifies the search tree of
a nondeterministic computation in a datastructure similar to Or?m.
This reified tree can be explored by programmer-supplied search
strategies instead of the default depth-first search.

Given the tree-based interface of FLP encapsulated search, it is a
perfect platform for the ideas of this paper: the declarative definition
of search heuristics as archetypal search trees, and the modular
composition of search trees with the (.) operator.

Constraint Programming The constraint logic programming li-
braries of many Prolog systems [5, 8, 13, 42] provide search heuris-
tics that offer limited reusability: they are hardwired in a generic
labelling predicate that can be used to solve particular classes of
problems. The one exception is the branch-and-bound heuristic of
ECLiPSe [29], which is not tied to a labelling predicate.

Schrijvers et al. [30] present Monadic Constraint Programming,
a monadic model of Constraint Programming. This model features
an explicit search tree datastructure that is manipulated by search
heuristics. Compositionality of search heuristics is achieved by
defining them in terms of a set of hooks. This approach is more
complex and operational in nature than the one in this paper,
which makes it harder for the programmer to define new heuristics
and reason about the behaviour of compositions. The hook-based
approach is further explored in C++ [33] and Prolog [34] settings,
where it suffers from similar problems.

Nordin and Tolmach [25] describe a lazy functional framework
for solving constraint satisfaction problems. As in our approach,
it is straightforward to express and combine algorithms to prune
the search space, using both fixed and dynamic variable ordering.
They note an imperative implementation of several combinations
of these algorithms is known to be tricky. However, they stress the
importance of being able to experiment with them, since the best
combination of features tends to depend on the particular problem.

Continuations The explicit use and manipulation of continuations
in continuation passing style programs for implementing search is
folklore. In the late 1980’s, Felleisen [10] and Danvy & Filinski [6]
independently proposed operators for delimited continuations in
direct style programs. The latter is the reset/shift approach we have
adopted in this article, which has a simple static interpretation in
terms of continuations.

The CP language Comet [38] is a particularly interesting appli-
cation of this technique: it features fully programmable search [39]
based on continuations that make it easy to capture the state of the
solver and write non-deterministic code.

8.2 Algebraic Effect Handlers
Plotkin and Pretnar [28] have introduced the concept of handlers
for algebraic effects as a generalization of exception handlers. Their
approach applies handlers on the free monad. Based on this idea, two
entirely new programming languages, Frank [24] and Eff [1], have
been created from the ground up around algebraic effect handlers;
in these languages the computation monad is implicit.

More recently, three proposals show how to implement algebraic
effect handlers on top of existing functional programming languages:
Kiselyov et al. [20] provide a Haskell implementation in terms of
the free monad, in combination with the codensity transformer to
obtain better performance for (>>=). Brady [3] provides a layered

implementation: a syntactic monad is interpreted into what is
essentially the delimited continuation-based approach of Section 6.
Finally, underneath it all is an arbitrary monad m; while Brady only
uses this underlying monad in the handler definitions, his handler
infrastructure is in fact a monad transformer. Kammar et al. [18]
present several different implementations in Haskell, OCaml, SML
and Racket. For Haskell, the free monad and a continuation-based
approach are considered. For the other languages, the delimited
continuation approach is taken.

8.3 Monads
Monadic Zip The literature covers a number of zip-like monadic
operations similar to our (.): Giorgidze et al. [12] introduce a
monadic zip operator mzip to support parallel monad comprehen-
sions, a generalization of parallel list comprehensions. Their mzip
is subject to two laws: it must have a partial inverse munzip, and it
must be associative.

As part of their Joinad concept, Petricek et al. [27] define
monadic operations similar to ours, including a monadic zip. How-
ever, the laws associated with their operations make them different
in important ways from ours. Notably, while our (.) and (|||) com-
mute, for Joinads the zip operator left-distributes over or.

Monad Laws Gibbons and Hinze [11] promote reasoning about
code that is polymorphic in the monad by means of laws, which is
the starting point of this paper. They illustrate law-based reasoning
on several related monadic effects: failure, nondeterministic choice
and probabilistic choice.

Free Monad Transformer The free monad (transformer) is also
known by various other names, emphasizing different aspects: corou-
tine monad [2], resumption monad [26] and step monad [17]. The
coroutine aspects is very relevant in our setting: in essence, the (.)
operation treats two searches as coroutines that are synchronized at
corresponding occurrences of (|||).

9. Conclusion
This paper has exploited the synergy between two declarative
paradigms to tackle a challenging problem in logic programming
with functional programming techniques. First it has shown how to
cleanly separate logic and search heuristics in a functional model of
Prolog by means of effect handlers and the free monad transformer.
Then it has derived an actual Prolog implementation from this
functional specification.

We are keen to use effect handlers to further extend Prolog with
control operations that interact with the ones presented in this work.
Of particular interest is Spivey’s wrap [37] that groups multiple
binary disjunctions into a single multi-way disjunction.
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