Introduction

The function denotes the deflection at point at time , stands for the amplitude at point , for the phase and for the frequency of the oscillation. A so-called segmental continuum has the following main oscillation properties (from [83, Introduction]):

- All the frequencies are simple. (This means that the amplitude function of a given frequency is uniquely determined up to a constant factor.)
- At frequency the oscillation has exactly nodes. (Suppose to be a node, this means that .)
- The nodes of two successive overtones alternate.
- When superposing natural oscillations with frequencies , the number of sign changes of the deflection fluctuates with time within the limits from to .

Now we will construct a so-called oscillation matrix, and in [83] it is shown that all the properties mentioned above are strictly connected to the properties of the oscillation matrix. Suppose our oscillation system consists of masses , located at points . Note that the masses are not fixed but movable in the direction of the -axis. With we denote the so-called influence function. It denotes the deflection at point under the influence of a unit force at point . Denote . Assume to be the deflection of these masses, under the influence of a force:

We have that the deflection at point at time can be written as

For equal to we have

When denoting the amplitude of the deflection as in the harmonic oscillation equation we get

which leads after differentiation of to the following system of equations:

which can be rewritten, to obtain the following system of equations:

Which has a solution if:

revealing thereby the possible frequencies of the oscillation.

As already mentioned, in [124] Krein observed that the oscillation properties, given above, are closely related to the influence coefficients . Even more, the oscillation properties are related to the fact that all minors (a minor is the determinant of a submatrix of the given matrix) of the matrix (of all orders) have to be nonnegative. The theory connected to these matrices is called the theory of oscillation matrices.

Important properties of these oscillation matrices, and their
connections with the oscillation properties where investigated in the
papers [80,81,82]. Also other authors show their interest
in this field of matrices [64,75,76], especially the article
[64] contains several references related to positive and
nonnegative matrices. The choice of the term *oscillation matrix*
by the authors of the book [83] comes from the following
circumstance: (citation from [83], Introduction, page 3)

As soon as for a finite system of points, the matrix of coefficients of influence of a given linear elastic continuum is an oscillation matrix (as it always is in the case for a string or a rod supported at the endpoints in the usual manner), this automatically implies the oscillation properties of the vibration of the continuum, for any distribution of masses at these points.

The theory of oscillation matrices (sometimes also other matrix theories), has an analogue in the theory of integral equations. For the oscillation matrices this corresponds to the theory of the following integral equation:

with an oscillation kernel .

It follows from the definition that an oscillation kernel is characterized by the following inequalities:

- for every choice of points and where the equality sign should be omitted when ;
- for and .

For the purpose of our thesis this introduction into the theory of oscillation matrices is enough. In the remainder of this section we will take a closer look at two types of oscillation matrices: Jacobi matrices and one-pair matrices. Jacobi matrices are a special type of tridiagonal matrices, namely irreducible ones, and one-pair matrices are a special type of semiseparable matrices, namely symmetric generator representable semiseparable matrices of semiseparability rank . Also attention will be paid to the most important properties of these matrices, which are of interest in the theory of oscillation matrices.