') Linneuniversitetet

Kalmar Vixjo

Test Suite
ActivFORMS Virtual Machine

Author: M. Usman Iftikhar,
Danny Weyns

KU Leuven, Belgium
Linnaeus University, Sweden
Email: usman.iftikhar@lnu.se




Linneuniversitetet

Kalmar Vixjo

ActivFORMS

ActivFORMS (Active FORmal Models for Self-adaptation) is a formally founded
approach that aims to provide guarantees for the correct execution of MAPE-K
feedback loops of self-adaptive systems [1]. The key component of ActivFORMS
is a virtual machine that executes formal models of a feedback loop that are
specified as a network of timed automata. To provide evidence that the virtual
machine works correctly, we created a test suite, which tests the correct
execution of models by the virtual machine. The test suite comprises models of
the different model primitives used. To check the correctness of a model
primitive, we compare the results of the execution of the model of the model
primitive by the Uppaal verifier [2] with the results generated by the execution
with the ActivFORMS virtual machine. Concretely, we exploit the simulation
feature of Uppaal that allows saving execution traces of model executions. The
test suite matches the results of the execution of model execution by the virtual
machine with the execution traces.

Model Primitives
We use the following tests to verify the execution of model primitives:

1. Variablelnitialization.xml: Verify initialization of the variables with their

initial values.

Processlnitialization.xml: Tests process initialization and instantiation.

3. Loops.xml: Tests loops supported by Uppaal such as while, do while and
for loop, iterative and inner loops.

4. Functions.xml: Tests template functions, global and system declarations.
Furthermore, tests function calls with parameters (passed by value and
by reference).

5. Signals.xml: Tests type of signals, i.e., binary, broadcast, urgent, urgent

broadcast signals, and also, tests array of signals.

Time.xml: Checks time constraints include invariants and guards.

Locations.xml: Checks committed and urgent locations with their priority.

Structures.xml: Checks structures, their initialization, and uses.

Arrays.xml: Test arrays, initialization, in loops, etc.

0 Operators.xml: Checks unary, binary and ternary operators with different

data operands and expressions.

N

S0 PN

Running the Test Suite

To execute the test suite, double click the provided jar file or execute the
following command via the console:

java —jar TestSuite

2(4)



Linneuniversitetet

Kalmar Vixjo

The default execution of the test suite (without any parameters) reads the
models and trace files from the “tests” folder in the test suite path. To change the
tests folder path or to execute a single test, use the following commands:

* -ddirectoyPath: This command parameter changes the tests folder directory.

* -fmodelfilePath tracefilePath: This command executes only one test by using
the paths of the model and trace files.

* -t timeunit: This option enables changing the model time (units in
milliseconds). The default time unit is 10 milliseconds.

¢ -dt maxDelayTransitions: This option forces the virtual machine to take a
transition after a maximum number of delay transitions. A delay transition
only passes time without an actual transition from one automata location to
other. The default value for this option is maximum 10 delay transitions. If
this option is set to -1, the virtual machine turnoff the option. If this option is
set to 0, the virtual machine will not perform any delay transition, and, if
possible, immediately takes an enabled transition.

Adding New Tests

New tests can be added dynamically to the test suite. To that end, the Uppaal
Timed Automata Parser Library needs to be installed. Information about
installing the Parser library can be found here: http://www.pi-
identity.com/blog/2011/10/26/using-uppaal-for-trace-interpretation/

After installing the parser library, there are four steps to create a trace file from
the model.

1. Save the trace file from the Uppaal simulator. This file is an unreadable
binary. We need to make this trace file readable for the test suite.

2. Compile the model using the following command:
UPPAAL COMPILE ONLY=1 verifyta model.xml - > model.if

The Verifyta utility can be found in the Uppaal folder.

3. After compiling the model, use both the compiled model and trace file to
create a readable trace file.

tracer model.if trace.xtr > trace.txt

The tracer utility can be found in the installed automata parser library.
4. Save the model and the trace files in the tests folder of the test suite. To

add new tests, the model and trace files should be saved with the same
name and with ".xml" and ".txt" extensions.

3(4)



Linneuniversitetet

Kalmar Vixjo

References:

[1]. M. U. Iftikhar, D. Weyns, ActivFORMS: Active FORmal Models for Self-
adaptation, 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2014, Hyderabad, India

[2]. G. Behrmann, R. David, and K. G. Larsen. A tutorial on Uppaal (pages 200-
236). Springer, 2004.

4(4)



