
Self-adaptation of software using automatically generated

control-theoretical solutions

Stepan Shevtsov, Danny Weyns and Martina Maggio

Abstract Control theory has contributed a set of foundational techniques to handle “change” at runtime
in software applications. These techniques however have fundamental limitations as well: (i) they require
the development and understanding of mathematical models; (ii) synthesizing solutions is often done on a
per-problem basis, discouraging flexibility and generality. Software engineering, as a discipline, has always
aimed at finding reusable and modular solutions. The combination of the desire to apply formally grounded
control-theoretical principles and reuse existing solutions has motivated research on the topic of automat-
ically generated control solutions. This research aims at designing control strategies in an automated way
from data that qualifies the given problem at hand. This chapter provides an overview of the research topic of
automatically generated control-theoretical solutions, explaining the key research contributions and paving
the way for future research.

1 Introduction

Software applications need, more than ever, to be able to deal with “change” [30, 42]. Software needs to
be continuously available, which in turns requires that developers treat change as a first class concern
in the complete lifecycle of the application development, operation, and maintenance. Software applica-
tions are nowadays expected to deal seamlessly with different types of change, such as resource fluctua-
tions [37], component failures [45], requirement modifications [7, 50], different user-preferences [44], and
much more [1, 2, 9, 14, 27, 43]. Often, these changes are not predictable at design time, requiring software
to execute with incomplete knowledge and face new challenges during operation [51, 53]. Consequently,
software engineering researchers are experimenting with new solutions that can handle change at runtime
without incurring into penalties, slowdown, and downtime. Generally speaking, the software built to deal

Stepan Shevtsov
Linnaeus University, Sweden and KU Leuven, Belgium, e-mail: stepan.shevtsov@lnu.se

Danny Weyns
KU Leuven, Belgium and Linnaeus University, Sweden e-mail: danny.weyns@kuleuven.be

Martina Maggio
Lund University, Sweden, e-mail: martina@control.lth.se

1



2 Stepan Shevtsov, Danny Weyns and Martina Maggio

with change is often called “self-adaptive” [15, 17, 52], for the ability to modify its own behavior and adapt
to the current execution conditions.

Continuous- and discrete-time control theory1 has been identified as a promising approach to design self-
adaptive software [11, 18, 26, 56]. However, the wide adoption of control-theoretical solutions in the design
of self-adaptive systems has been limited by a number of factors.

First and foremost, continuous- and discrete-time control solutions often require a “physical” model of the
object to be controlled. In the case of low-level resources – such as CPU, memory, and network bandwidth
– researchers have proposed models that attempt to capture the phenomena of interest [3, 20, 57] with a
precision sufficient to perform adaptation. However, it is very difficult to extract control-theoretical (i.e.,
equation-based) models for the behavior of software applications. This has been one of the main reasons
why several researchers have argued that applying control theory to adapt the higher-level software elements
is a more complex problem [4, 10, 22]. Other reasons are the diversity and interplay of requirements, and
the need for instrumenting software to obtain measurements from sensors and enacting the system through
actuators [12, 28]. Second, the models often becomes complicated, calling for elaborate solutions from the
mathematical perspective. Finally, since appropriate and accurate models are so difficult to write, existing
control-based approaches are often tailored for a particular problem, while software engineers usually aim
for reusable solutions. These observations have been recently confirmed by a systematic study on control-
theoretical software adaptation, highlighting the shortcomings of the existing ad hoc control-theoretical
solutions [46].

As a response to these shortcomings, researcher aimed at automatically generating control solutions.
These solutions are general enough to tackle a variety of problems, trading-off the optimality that could be
reached by tailored solutions. The code for these general solutions can be automatically generated based on
observations and data from the software application that should be controlled. Simple linear models describ-
ing the software behavior are automatically extracted from the data and used – at runtime – to synthesize
a control solution. This chapter gives an overview of the state of the art of the research in automatically
generated control strategies for software applications and outlines promising paths for future work.

The remainder of this chapter is structured as follows. Section 2 provides a brief background on auto-
matically generated control-theoretical adaptation of software. In Section 3, we delve into details discussing
the differences among the proposed solutions. Finally, Section 4 outlines a number of challenges for future
research and Section 5 draws some conclusions.

2 Background

This section explains the basic principle behind automatically generated control-theoretical solutions and its
use for self-adaptation.

The overall objective of automatically generated control-theoretical adaptation is the simplification of
the software design process. The aim of these strategies is to provide the software engineer with the advan-
tages of a control-theoretical design, without the need for in-depth control expertise. The main advantage of
control-theoretical solutions is the presence of formal guarantees [24]. If mastered correctly, the use of the
knowledge coming from control theory allows for certified and verifiable solutions, where desired proper-
ties can be guaranteed by design. For example, with control theory it is possible to precisely calculate the

1 In this chapter, we restrict ourselves to continuous- and discrete-time control [8, 55]. Discrete event systems are out of our
scope.



Self-adaptation of software using automatically generated control-theoretical solutions 3

+ Feedback
Controller

Software
System

-1

Goal Error
Control
Signal

Measured
Output

Disturbances

Fig. 1: A typical control-theoretical feedback loop

amount of disturbance the system can withstand or to prove that the system will not over consume resources
in changing external conditions.

Figure 1 shows a typical control-theoretical feedback loop that is used in self-adaptive software systems.
Reading the figure from left to right, the Goal represents a particular level of software quality that should be
achieved by self-adaptation. The Goal is often specified as a setpoint, i.e., a certain value of a non-functional
requirement, such as a specific service failure rate or response time. Using the setpoint and the Measured
Output value for the same software quality, an Error is calculated as Set point�MeasuredOut put, where the
-1 block indicates that the Measured Output value should be subtracted. The Feedback Controller uses the
Error in order to compute the Control Signal, a value or a vector of values that effect the Software System.
If designed correctly, the Control Signal will result in a Measured Output that is equal or very close to the
Goal value. The Disturbances, such as changing availability of resources or component failures, affect the
software behavior at runtime. So one of the main purposes of control strategies is to neglect the effect of
Disturbances on the system.

Historically, many manually generated control strategies used the typical feedback loop shown in Fig-
ure 1. The automated strategies have two main differences from these solutions. First, the automated strate-
gies require certain conditions to be satisfied and the availability of specific software functions:

• The developer that wants to generate and use the control strategy should have access to the software
system, which should be working and on which experiments should be done and data must be collected
– the data is used in an automated way to build a model of the software that can be used for control
purposes;

• The developer should be able to qualify, quantify, and measure the requirements that must be satisfied on
the system – these requirements are then translated into goals and objectives that the controller will try to
achieve;

• The developer must provide access to a set of sensors that get reliable data about the quantifiable objec-
tives (e.g., measure the response times of a cloud application);

• The developer must provide access to a set of actuators (tunable parameters of the system) that can be
used during runtime to modify the behavior of the software application (e.g., the percentage of rejected
requests, or different implementations of the same functionality).

Second, the Feedback Controller is created automatically. Namely, the automated solution starts by run-
ning experiments on the software application, changing the values of the actuators according to predefined
patterns and measuring the values of the goals in the tested configurations. With this data, the solution gen-
erates a mathematical model of the software using system identification [34]. 2 Finally, this model is used
to synthesize a controller that provides guarantees on certain system properties. The controller – synthe-
sized in form of equations and subsequently in form of a code block – adapts the behavior of the software

2 Other model synthesis techniques can be used to produce system model. But historically, automated approaches used system
identification as it is fast and approximates software well enough for controllers to work.



4 Stepan Shevtsov, Danny Weyns and Martina Maggio

changing the values of the actuators to achieve the given goals. The resulting controller is often tunable –
some parameters have default values, that can be changed to alter the behavior of the controller itself. For
example, parameters can be used to exploit the trade-off between robustness to disturbances and speed of
convergence. The software engineer can select these parameters based on experience and on the specific
execution conditions.

3 Automated Control-Theoretical Software Adaptation

This section outlines the research progress in self-adaptation of software using automatically generated
control-theoretical solutions. We discuss five different research problems that have been explored. Figure 2
gives an overview of the research steps and shows representative approaches for each step. The arrows in the
Figure show the contribution of each step/approach to the following efforts.

Fig. 2: Research in automated control-theoretical software adaptation: progress steps (left) and approaches (right).

The initial research was primarily targeting the automation of a control solution development. Based on
prior experience with control of software applications, some generalization arose and led to the introduction
of the Push-Button Methodology (PBM) [22]. At the same time, a similar method called Brownout [33] was
applied in a specific software domain, cloud applications. The next clear research goal has been the extension
of automated methodologies to support multiple adaptation goals simultaneously, e.g., to achieve a specific
performance level and minimize cost at the same time. The first proposed extension has been the Automated
Multi-objective Control of Software (AMOCS) approach [23], followed by the Simplex Control Adaptation
(SimCA) [47]. SimCA tackled the problem of multi-objective adaptation by combining controllers with the
simplex optimization algorithm in a hierarchical structure. Then, SimCA* [49] introduced components that
adjust the adaptation mechanism at runtime, to deal with new types of goals and changes in the set of adapta-
tion goals (e.g., adding a new goal, removing a goal). Finally, the use of Model Predictive Control (MPC) was
investigated. In this approach, the controller acts based on the current feedback from the software, but uses
the model of its own behavior to predict the software evolution. The fully automated MPC-based approach
is called Automated Multi-objective Control of Software with Multiple Actuators (AMOCS-MA) [36].



Self-adaptation of software using automatically generated control-theoretical solutions 5

The main properties of all automated control-theoretical adaptation approaches are listed in Table 1, these
approaches will be discussed in details in the following sections.

Table 1: Automated Control-Theoretical Adaptation Approaches

Approach Inputs (Goals) Main Pros Main Cons
Brownout, PBM 1-setpoint Automation, guarantees Handles only one goal

AMOCS n-setpoint, 1-optimization Multiple goals and prioritization Sub-optimal adaptation decisions
SimCA n-setpoint, 1-optimization Guarantees + optimality Setpoints, needs knowledge about

some of the system parameters
SimCA* n-setpoint, n-threshold, Handles new types of goals Needs knowledge about

1-optimization and goal changes at runtime some of the system parameters
AMOCS-MA n-setpoint, 1-optimization Guarantees + optimality, does not need Sensitive to disturbances

system knowledge, flexible computation time and model inaccuracies

3.1 Automation of Control System Development

Control-theoretical approaches were first used in software adaptation more than a decade ago [1, 2, 14].
However, most of these approaches aim to solve a specific problem at hand. Therefore, new problems would
require modifications or even replacement of a control system, which in turn requires expertise in control
theory, extra resources and effort. To overcome this concern, researchers have studied the ways to automate
the entire process of control system development from the model synthesis to the formal analysis of guaran-
tees. This became the first step of research on applying automatically generated control-theoretical solutions
in software adaptation.

The representative of the first step of research are Brownout [33] and PBM [22]. Both these approaches
are based on the same underlying principles (creating a first order model from data and controlling that first
order model using pole placement). Brownout is applied to the more confined domain of cloud comput-
ing applications, and is tailored to the specific problem of capacity shortages. Because of this, Brownout
achieves – on its own problem – better performance than the application of the PBM controller without any
modifications. We provide details on both of these approaches below.

3.1.1 Brownout

The main idea behind Brownout [33, 35] is to apply the principles of graceful degradation to cloud appli-
cations using control theory. Cloud applications behave according to the request-response paradigm, with
clients issuing requests and a certain number of replicas of the same application providing the according
responses. When producing the response to the user requests, it is often possible to identify a part of the
response that is the mandatory to display and a part of the response that would provide a better user expe-
rience and increased revenues, but is not mandatory. In the case of a travel agency website, the mandatory
part of the response is the flight search, while additional optional information are car rental locations and
hotel suggestions. Clearly, the application owner wants to provide the additional information, but not at the



6 Stepan Shevtsov, Danny Weyns and Martina Maggio

expense of losing a customer. Brownout divides the response into the two mentioned parts and measures the
response time to determine how much percentages of the optional content should be served. This percentage
is called the dimmer value. The goal of brownout is to have as big dimmer as possible, i.e., to show as much
optional content as possible, without penalizing response times.

Brownout assumes that the cloud application behaves according to a simple first-order linear model,
where the value of the 95th percentile of the response time t95 varies depending on the dimmer value as
follows:

t95(k) = a q(k�1)+dt95(k), (1)

where q(k) is the dimmer value; a(k � 1) is a time-varying coefficient that depends on the computing
platform and can be estimated; dt95(k) is a disturbance, interfering with the nominal system’s behavior; k is
the discrete time instance.

Based on the model (1), the following controller is then synthesized using loop shaping [8]:

q ⇤(k) = q(k�1)+
1� pb

â(k)
· et95(k) (2)

where â(k) is an estimate of a(k) obtained with a Recursive Least Square (RLS) filter; pb is a controller
parameter called pole; et95(k) is the error between the desired 95th percentile of the response time t̄95(k)
and the actual value. The pole pb can be used to trade the speed of controller convergence for robustness
to model perturbations. The analysis of the brownout closed loop allows to prove a number of properties,
such as system stability and zero steady-state error. However, this proof is subject to how well the model (1)
approximates the behavior of the cloud application.

Brownout uses a single actuator (the dimmer value) to achieve a single goal, specified in terms of a set-
point for the response times statistic. The control strategy in Brownout can be greatly improved and many
follow-ups were devised. For example, an event-based version of the brownout paradigm [19] explores a
similar cloud problem, but controls the server queue length. Furthermore, extensions that include brownout
load balancing were considered [21, 32]. They demonstrate that state-of-the-art load balancers which use
response times as a measure for determining where to send requests do not work with brownout-aware ap-
plications. This is a natural limitation as the brownout controller can satisfy only a single goal and therefore
cannot form a multi-objective control strategy with other controllers.

Brownout was designed specifically for cloud applications, so strictly speaking, it is not a generally
applicable solution. However, it is important to include Brownout in this work as it became the first building
block for development of automated control-theoretical adaptation. The generally applicable Push-Button
Methodology, discussed in the following section, is based on the same principles and shares many elements
with Brownout.

3.1.2 Push-Button Methodology

The PBM methodology [22] works in a way similar to Brownout, but goes beyond a single goal and a single
actuator. Also, it introduces the idea of identifying the model online. Unlike in Brownout, where model is
pre-determined, PBM builds a model directly from the data received by running experiments on the software
and produces a controller for this model. Figure 3 shows the two phases of the methodology: model building
and controlling.



Self-adaptation of software using automatically generated control-theoretical solutions 7

Fig. 3: The two operational phases of PBM.

The input required by PBM from a software engineer is a method to set the actuator value and a method
to collect measurements about the system goal. Based on this input, PBM first produces a linear model M
of the software:

M : y(k) = a(k�1) ·u(k�1) (3)

Where the input u is the value of the actuator; the output y is the effect of the actuator on the goal; the
parameter a is a time-varying coefficient that is determined during model building by feeding different input
values as u and measuring the resulting outputs y; and k is a discrete time instance.

After the model building, the controller synthesis phase automatically generates a Proportional-Integral
controller C that works on the model M and adapts the software.

C : u(k) = u(k�1)+
1� pb

a
· e(k) (4)

The controller has one parameter, pb, that has the same role that it had in the Brownout controller. More
guidelines on how to tune the controller parameter pb are available in [22].

To address model inaccuracies and small perturbations during software operation, the value of a is up-
dated at runtime. In case of critical changes (e.g., a software component failure), PBM restarts the model
building phase and regenerates the controller.

3.2 Adaptation with Goal Prioritization

In order to automatically create control solutions for more practical problems, researches have studied the
ways to address multiple adaptation goals simultaneously. The first automated approach that offered control-
based multi-objective software adaptation was AMOCS [23]. This approach extends the methodology behind
PBM to use multiple actuators and multiple controllers in a cascaded structure, see Figure 4.

AMOCS works as follows. The set of available actuators A = {a1, . . . ,am} is partitioned to reach the set
of goals G = {g1, . . . ,gn}, where m � n, i.e., the system should have more actuators than goals. The goals
are added into the set G according to their priority order, forming the chain < g1,g2, . . .gn >, where g1 is the
most important goal and gn is the least important one. All goals, except the last one, are specified as setpoint
values to be achieved by the adaptation. The last goal gn is always the optimization of a specific value (e.g.,
maximization of profit, minimization of cost). Ai denotes the subset of actuators used to achieve the goal gi.
AMOCS assumes that every actuator is used:



8 Stepan Shevtsov, Danny Weyns and Martina Maggio

Fig. 4: A self-adaptive software with AMOCS (for 2 goals).

[

i2{1...n}
Ai = A , (5)

and each actuator is assigned to a single goal only:

8i, j 2 {1 . . .n}, i 6= j =) Ai \A j = /0, (6)

A first instance of PBM controller C1, see (4) for a controller description, is then used to translate the
discrete set of configurations of all the actuators A1 related to the first goal g1 into a single configuration
that satisfies this goal. This configuration is then sent in the form of control signal k1 to the software system
and to the second instance of PBM controller C2, that tries to achieve the second goal g2 with the available
actuators A2 and operating conditions. The resulting configuration is send to software as control signal k2.
If goals g1 and g2 are not related, the control signal k1 will still be received by controller C2, but it will not
affect the reachability of the goal g2.

In this controller chain, only the first goal is guaranteed to be stable, while the stability of the others
depend on the disturbances and on the control values set by the previous controllers in the chain. In other
words, the goal g2 is guaranteed to be reached only if control signal k1 allows to reach it. The last opti-
mization requirement is reached to the best of the chain ability, hence there is no guarantee for the solution
optimality. Despite the lack of formal guarantees, the experiments with AMOCS show that the chain of
controllers behaves well in a variety of different scenarios and can successfully handle multiple goals of a
setpoint type.

3.3 Adaptation with Guaranteed Optimality

Guided by the need for stronger adaptation guarantees in systems with multiple goals, the research explored
new ways to automatically build the control system. The approach resulting from these efforts is called
Simplex Control Adaptation (SimCA) [47]. SimCA combines PBM with the simplex optimization method,
utilizing the advantages of both approaches. SimCA finds a system configuration that satisfies multiple goals,
reaches optimality with respect to an additional goal, achieves robustness to environmental disturbances and
measurement inaccuracy, and provides control-theoretical adaptation guarantees. To that end, SimCA runs
on the fly experiments on the software in an automated fashion, builds a set of linear models of the software
at runtime, creates a set of tunable PI-controllers that operate on these models and independently compute



Self-adaptation of software using automatically generated control-theoretical solutions 9

control signals for each of the goals, and combines controller outputs using the simplex method to adapt the
system. Figure 5 schematically shows the primary building blocks of SimCA.

Fig. 5: A self-adaptive software with SimCA.

SimCA builds a self-adaptive system in three phases executed during system operation:

1. In the Identification phase, n linear models of the controlled system are built. SimCA uses multiple
instances of the PBM model M , where each model Mi, i 2 [1,n], is responsible for one goal si. Similar
to PBM, each model is automatically learned at runtime by running the experiments on the software (see
Section 3.1 for details). As in PBM, the model Mi automatically adjusts at runtime according to changes
in the system behaviour.

2. In the Controller Synthesis phase, SimCA constructs a set of n controllers; each controller Ci is respon-
sible for the i-th goal. Ci calculates the control signal ui(k) at the current time step k depending on the
previous value of control signal ui(k�1), model coefficient ai, parameter pole pi and the error ei(k�1),
with ei = si �Oi. Similar to PBM, pi is used to tune the controllers and trade-off different system proper-
ties.

ui(k) = ui(k�1)+
1� pi

ai
· ei(k�1) (Ci)

3. In the Operation phase, the set of controllers effectively perform control. Each controller Ci manages one
goal si, rejects disturbances acting on the according output Oi(k), and provides an output signal ui(k).
SimCA combines the signals ui(k) from all the controllers and uses the simplex method to calculate the
actuation signal usx that drives the system towards an output that satisfies all adaptation goals.
Generally, the simplex method allows to find an optimal solution to a linear problem written in the stan-
dard form:

max{cTx | Ax  b;x � 0} (7)

where x represents the vector of variables (to be determined), c and b are vectors of (known) coefficients,
A is a (known) matrix of coefficients, and (·)T is the matrix transpose [16].
In SimCA each equation, except the last one, represents a goal si to be satisfied. The last equation ensures
that the system selects a valid actuation signal by constraining the values that can be taken by elements of
the vector x, e.g. x � 0. The control signals ui(k) produced during the control phase replace constants b,
whereas matrix A and vector cT are substituted with the monitored parameters P(k) of the system. The
goal of simplex is to find a proper actuation signal usx, i.e., vector x.
Note that SimCA uses a simplex variant with equalities (Ax = b) in order to prevent simplex from chang-
ing the effect of control signal ui(k) on the output signal Oi(k). Instead, simplex is responsible for seam-
less translation of control signals ui(k) to actuation signal usx. This allows to provide the entire set of



10 Stepan Shevtsov, Danny Weyns and Martina Maggio

control-theoretical guarantees, including stability, absence of overshoot, tunable settling time and ro-
bustness to disturbances. A major advantage of SimCA over approaches from the previous research steps
is that simplex guarantees solution optimality, meaning that all the system goals are guaranteed to be
achieved. An interested reader may refer to [47] for further details.

A follow-up work [48] compares SimCA with an architecture-based activFORMS approach using a sim-
ulated service-based system. The study shows that both approaches can deal with multiple goals and provide
guaranteed solution optimality. However, SimCA achieves better results in the presence of runtime changes
as it does not rely on data verified at design time. Except optimality, the two adaptation approaches offer
different guarantees. The design of SimCA adaptation mechanism allows to formally prove the properties of
underlying system and guarantee that they will hold at runtime independent of the system parameters. Activ-
FORMS, on the other hand, can guarantee the functional correctness of the implementation of the adaptation
algorithm, such as the absence of erroneous states and correct interaction between adaptation components.

3.4 Adaptation with New and Changing Goals

One interesting research line for automated methodologies and for control methodologies in general is the
selection and support of types of adaptation goals. The previously developed automated approaches had two
major drawbacks. First, they addressed goals specified either in the form of particular setpoint values to be
achieved by the system (S-goal) or values to be optimized (O-goal), while many software systems need to
address a threshold goal that keeps a value above/below a threshold (T-goal). A typical example is limiting
the response time of a web server. Approaches such as described in [31, 33, 39] solve this problem either by
optimizing the response time (O-goal) or by defining a setpoint for response time that the controller should
guarantee (S-goal), when the actual requirement is to keep response time lower than a certain threshold.
Second, the previously developed approaches did not provide support for changing the set of system re-
quirements during operation, which requires on the fly adjusting, activation and deactivation of adaptation
goals. Changing requirements are important in practice, e.g., to deal with drastic changes in the system or
its environment that may require the system to change from one set of requirements to another.

In order to address the two mentioned concerns, the SimCA approach (see Section 3.4) was reworked and
upgraded into SimCA* [49]. Compared to original SimCA, the new approach includes an additional Goal
Transformation phase (Figure 6) and the necessary mechanisms to support changing system requirements
by activating/deactivating goals (Figure 7).

The Goal Transformation Phase of SimCA* is performed between the Controller Synthesis and Operation
phases. The purpose of this phase is to transform T-goals into goals that can be controlled by the original
SimCA controller (Ci). As such, the approach uses simplex, where each equation in the system (7), except
the last one, represents an S-goal or T-goal to be satisfied (see Figure 6). Equalities are used for S-goals,
while inequalities are used for T-goals. The last equation ensures that the system selects a valid solution, the
vector x, by the means of constraints, e.g. x � 0. The goal of simplex is to find such vector x that satisfies
all system goals; the details of how simplex finds such a solution can be found in the linear programming
literature [16]. Knowing the vector x, each T-goal is transformed into a controller goal (C-goal) ci as follows:
ci = Pi(k) * x. The resulting C-goal represents a particular value of a corresponding T-goal. For example,
a T-goal that should keep a value below a threshold will be transformed into a C-goal with a value that is
equal to the lowest possible value of the goal below that threshold that satisfies all other requirements. All
the C-goals and the original S-goals are then used by controllers (Ci) in the usual Operation phase described
in Section 3.4.



Self-adaptation of software using automatically generated control-theoretical solutions 11

T-goal 1..m

Simplex:

Parameters P

C-goal 1..m
c1..m

S-goal 1..n

max{cTx|Ax≤b}

O-goal 1..q

x *

Fig. 6: Goal Transformation phase of SimCA*.

In order to address the changing system requirements, SimCA* is equipped with a Requirement Monitor,
Goal Activator and Goal Deactivator components, see Figure 7. The Requirement Monitor triggers the cor-
responding adaptation component after any system requirement is changed. The Goal Activator first reads
the relevant parameters P related to the activated goal. Then, in case of O-goal activation, it inserts P into
the objective function cT of simplex, performs a Goal Transformation (described above) and proceeds to
standard Operation phase. In case of S- or T-goal, the Goal Activator triggers a standard Identification phase
for the new goal, which is followed by Controller Synthesis, Goal Transformation and Operation. The Goal
Deactivator removes the according elements of the adaptation mechanism. Namely, when an S- or T-goal
is deactivated, the corresponding controller is removed together with the equation responsible for the goal
being deactivated. When an O-req is deactivated, the corresponding variables are removed from the objective
function cT of simplex. After that, the Goal Deactivator always triggers a Goal Transformation adapting the
configuration of the control system to the new set of requirements, after which the system returns to standard
Operation.

Fig. 7: Dealing with requirement changes in SimCA*. Numbers in circles/diamonds show the sequence of actions.



12 Stepan Shevtsov, Danny Weyns and Martina Maggio

3.5 Automated Model Predictive Control

The scope of applicability of the first multi-objective control solutions is limited in different ways. For ex-
ample, SimCA cannot prioritize goals or use infinite sets of values for the actuators, while AMOCS produces
sub-optimal solutions. To eliminate these limitations, researchers have studied the application of automated
model predictive control (MPC) – a technique based on the optimization of a cost function and on the predic-
tion of a future outcome of the adaptation. Generally, in control theory, MPC is considered particularly well
suited for multi-objective problems with optimization, because all the inter-dependencies between actuators
and goals are taken into account simultaneously, achieving a truly optimal solution.

The first research effort that identifies automated MPC as a potential multi-objective control strategy for
self-adaptive systems is [6]. However, it lacks details and does not provide any analysis of guarantees. In
the same research line – again for a specific problem, but with a general overlook – CobRA [5] provides a
framework to reason about MPC and its application to computing systems. Although the model in CobRA
has to be generated manually and fed to the system, the solution of the MPC problem is general with respect
to the involved quantities. The paper only provides an example of the framework application, which also
requires extensive manual tuning in order to tailor the equations to a specific problem. Although formal
guarantees are not discussed in CobRA, it is possible to prove that they hold to the extent that the model
allows. PLA [38,40] is based on similar principles that CobRA. It uses a model of the environment and of the
software to determine the best strategy to be followed using a model checker with the ability of looking into
the future expectations for the system. CobRA and PLA have been compared [41] showing similar results,
but a different runtime behavior. The authors conclude that the concrete approach should be picked based on
the problem at hand. For example, CobRA suits more for continuous inputs, while PLA works better with
discrete control.

Finally, a fully automated model predictive control strategy was developed as a part of AMOCS-MA
approach [36]. Similar to other automated solutions, AMOCS-MA starts with a model building phase. The
following model S is synthesized:

S =

(
x(k+1) = A · x(k)+B ·Da(k)
O(k) =C · x(k)

(8)

where k is a discrete time instance; O(k) is the vector of all system outputs at time k; Da(k) is the control
signal containing values of all actuators; x(k) is the current system state; x(k+ 1) is the next system state;
A, B and C are the matrices of coefficients obtained with model learning by running experiments on the
software at runtime. One of the AMOCS-MA advantages is that it reduces the model learning time by using
special input signals in the model building phase, see details in [36]. As in other automated approaches, the
model S is updated according to runtime changes that appear in the software system.

The model S is used by an MPC controller to minimize the following cost function, which handles all
S-goals and O-goals:

Minimize Da(k+ i�1), with i = 1 . . .L in:

L

Â
i=1

h
p

Â
j=1

q j · [O j(k+ i)�g j(k+ i)]2 +
m

Â
l=1

rl ·Dal(k+ i�1)2i (9)

Subject to: model S (8) and additional Da(k) constraints (see [36])

where k is a discrete time instance; L is the number of discrete time instances in future used for predicting



Self-adaptation of software using automatically generated control-theoretical solutions 13

MPC
Controller (9)

Software
System

Kalman
Filter

Goals

g j(k)

Control
Signal

Da(k)

Measured
Outputs

O j(k)

Disturbances

State
Estimate

x̂(k)

Fig. 8: A self-adaptive system with AMOCS-MA

software behavior; p is the number of goals; q j is the weight of goal j (allows goal prioritization); O j(k+ i)
is the predicted measured output of goal j at the i-th step in future; g j(k+ i) is the value of goal j at the i-th
step in future (this value is constant if goals do not change at runtime); m is the number of actuators; rl is
the weight of actuator l (allows actuator prioritization); Dal(k+ i� 1) is the predicted change in the value
of actuator l at the i�1-th step in future.

As the controller depends on the model (8), it requires information about the system state x(k). However,
it is problematic to measure the system state x(k) directly, so it is estimated instead. To accomplish this,
AMOCS-MA uses a Kalman Filter that computes an estimate x̂(k) of the state x(k) based on the previous
control signal Da(k�1), the measured outputs O j(k), prediction error and a number of other parameters.

Using the estimate x̂(k), the MPC controllers solves (9) and produces an optimal plan of control actions
for the future i steps: Da(k+ i�1), with i = 1 . . .L. The plan Da(k+ i�1) contains particular values of all
actuators at time instance (k+ i�1). However, AMOCS-MA uses only the first action of the plan, i.e. Da(k)
is applied to software, see Figure 8.

The controller (9) guarantees stability, zero steady state error, and minimal settling time by design. It also
guarantees the optimality of a cost function specified by the user. This function has tunable weights for the
system goals q j and actuators rl , allowing to trade-off different system properties, e.g. to prioritize response
time over cost.

4 Challenges

The analysis of automated control-theoretical adaptation solutions showed the use of various controllers,
from hierarchical adaptive PI-control (SimCA) to model predictive control (AMOCS-MA). However, most
of these approaches use the PBM model (3) or its variations. Indeed, one of the key points behind this line
of research is the difficulty in finding generic models that describe software applications and their behavior.
Although the usual software models – architectural models, UML descriptions – are a very good reference
to understand how the control code interfaces with the rest of the software application, they are not suitable
for the control design process. To design a controller, there is usually a need to understand how the quantities
that should be controlled are influenced by the actuators that one has available. Depending on the modeling
effort that the software engineer is willing to do, the control strategies can be more or less effective:

• PLA [38,40] and Brownout [33], for example, use explicit modeling of both the software behavior and the
environment. Explicit modeling goes a long way for improving the performance of the control strategy,



14 Stepan Shevtsov, Danny Weyns and Martina Maggio

that can be perfectly tailored for a new scenario using the given knowledge. Generally speaking, when an
explicit model is available, the spectrum of results that it is possible to obtain is much wider, opening up
possibilities and allowing for more precise results.

• SimCA [47] and SimCA* [49] lift some of the requirements on the modeling side. While no explicit
disturbance model is written, the system parameters specified in the Simplex algorithm are part of prior
knowledge that is given to the control strategy and that the controller does not have to identify based on
experiments.

• The PBM [22], AMOCS [23] and AMOCS-MA [36] approaches use implicit modeling requiring a very
limited effort from the software engineer. The engineer should only specify the actuators and sensor, and
possibly some weights that are unrelated to the model itself, but specify the properties of controller and
how to reach the goals. Despite the lack of modeling needs from the software engineer, these approaches
still build a representation of the software in the form of equations in their model-building phase. The
synthesized model is then used to create a controller.

• Advances in control theory have recently unveiled a new set of methods, denoted model-free control [13,
25, 29]. Model-free control synthesis does not build a model of the system to be controlled but only uses
data to optimize a control strategy. To date, model-free control has not been applied to software, and
could open possibilities for performance improvement and to tackle the complexity of software systems
in an automated way.

Apart from using the same type of model, all the automated approaches discussed in this chapter syn-
thesize centralized control solutions deployed on a single software product. Such approaches are not suit-
able for systems where communication between components is limited or very costly. A recent work on
architecture-based adaptation [54] introduced a number of patterns for designing decentralized adaptation
solutions, where controllers make independent decisions, but have some kind of interaction. The automated
control solutions may definitely benefit from this and similar efforts, as they provide means to adapt an
entirely new class of software systems.

5 Conclusions

Throughout the recent years, the automatically generated control-theoretical solutions have made a huge
progress. Starting from addressing a single adaptation requirement, these solutions can now handle multiple
goals of different types, deal with addition or removal of system requirements on-the-fly or even adapt
based on the predicted software evolutions. In this Chapter, we listed the key research steps that led to
such progress and highlighted the main approaches representing each of the steps. Surely, the automated
approaches have limitations. For example, they use simple models that are not always accurate and they
are less effective in specific scenarios than controllers finely tuned for those scenarios. However, the main
advantage of automated control comes from these limitations: simple models in combination with a generally
applicable controller allow to build a control-based self-adaptive system without involvement of a control
expert.

As for the future of automated control-based solutions, the research efforts can be aimed in two directions.
First, as the scope of applicability and practical effectiveness of existing solutions is often unclear, these
solutions should be tested in the industrial settings. Second, the researchers could use more state-of-the-art
practices, such as model-free control or decentralized adaptation.



References

[1] S. Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema, Online control for self-management in computing systems,
Real-time and embedded technology and applications symposium, 2004. proceedings. rtas 2004. 10th ieee, 2004May,
pp. 368–375.

[2] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti, Performance guarantees for web server end-systems: A control-
theoretical approach, IEEE Trans. Parallel Distrib. Syst. 13 (2002), no. 1, 80–96.

[3] T.F. Abdelzaher, J.A. Stankovic, Chenyang Lu, Ronghua Zhang, and Ying Lu, Feedback performance control in software
services, Control Systems, IEEE 23 (2003June), no. 3, 74–90.

[4] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns, Modeling dimensions of self-adaptive software
systems, Software engineering for self-adaptive systems, 2009, pp. 27–47.

[5] Konstantinos Angelopoulos, Alessandro V. Papadopoulos, Vı́tor E. Silva Souza, and John Mylopoulos, Model predictive
control for software systems with cobra, Proceedings of the 11th international symposium on software engineering for
adaptive and self-managing systems, 2016, pp. 35–46.

[6] Konstantinos Angelopoulos, Alessandro Vittorio Papadopoulos, and John Mylopoulos, Adaptive predictive control for
software systems, Proceedings of the 1st international workshop on control theory for software engineering, 2015, pp. 17–
21.

[7] Konstantinos Angelopoulos, Vı́tor E. Silva Souza, and John Mylopoulos, Capturing variability in adaptation spaces: A
three-peaks approach, Conceptual modeling: 34th international conference, er 2015, stockholm, sweden, october 19-22,
2015, proceedings, 2015, pp. 384–398.

[8] Karl Johan Åström and Richard M. Murray, Feedback systems: An introduction for scientists and engineers, Princeton
University Press, Princeton, NJ, USA, 2008.

[9] Shivnath Babu, Towards automatic optimization of mapreduce programs, Socc, 2010, pp. 137–142.
[10] Yuriy Brun, Ron Desmarais, Kurt Geihs, Marin Litoiu, Antonia Lopes, Mary Shaw, and Michael Smit, A design space for

self-adaptive systems, Software engineering for self-adaptive systems ii: International seminar, dagstuhl castle, germany,
october 24-29, 2010 revised selected and invited papers, 2013, pp. 33–50.

[11] Yuriy Brun et al., Engineering self-adaptive systems through feedback loops, 2009.
[12] Kai-Yuan Cai, J.W. Cangussu, Ray A. DeCarlo, and A.P. Mathur, An overview of software cybernetics, Software technol-

ogy and engineering practice, 2003. eleventh annual international workshop on, 2003Sept, pp. 77–86.
[13] Marco C Campi and Sergio M Savaresi, Direct nonlinear control design: The virtual reference feedback tuning (vrft)

approach, IEEE Transactions on Automatic Control 51 (2006), no. 1, 14–27.
[14] João W. Cangussu, Kendra Cooper, and Changcheng Li, A control theory based framework for dynamic adaptable systems,

Proceedings of the 2004 acm symposium on applied computing, 2004, pp. 1546–1553.
[15] Betty H. Cheng et al., Software engineering for self-adaptive systems: A research roadmap, Software engineering for

self-adaptive systems, 2009.
[16] George B. Dantzig and Mukund N. Thapa, Linear programming 1: Introduction, Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 1997.
[17] R. de Lemos et al., Software engineering for self-adaptive systems: A second research roadmap, Software engineering for

self-adaptive systems ii, lncs vol. 7475, 2013.
[18] Rogerio de Lemos, David Garlan, and Holger Giese, Software Engineering for Self-Adaptive Systems: Assurances,

Dagstuhl Seminar 13511, 2013.

15



16 Stepan Shevtsov, Danny Weyns and Martina Maggio

[19] D. Desmeurs, C. Klein, A.V. Papadopoulos, and J. Tordsson, Event-driven application brownout: Reconciling high uti-
lization and low tail response times, Cloud and autonomic computing (iccac), 2015 international conference on, 2015Sept,
pp. 1–12.

[20] Yixin Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, Using mimo feedback control to enforce policies for
interrelated metrics with application to the apache web server, Network operations and management symposium, 2002.
noms 2002. 2002 ieee/ifip, 2002, pp. 219–234.

[21] J. Durango, M. Dellkrantz, M. Maggio, C. Klein, A.V. Papadopoulos, F. Hernandez-Rodriguez, E. Elmroth, and K.-E.
Arzen, Control-theoretical load-balancing for cloud applications with brownout, Decision and control (cdc), 2014 ieee
53rd annual conference on, 2014Dec, pp. 5320–5327.

[22] Antonio Filieri, Henry Hoffmann, and Martina Maggio, Automated design of self-adaptive software with control-
theoretical formal guarantees, Proceedings of the 36th international conference on software engineering, 2014, pp. 299–
310.

[23] , Automated multi-objective control for self-adaptive software design, Proceedings of the 2015 10th joint meeting
on foundations of software engineering, 2015, pp. 13–24.

[24] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’Ippolito, Ilias Gerostathopoulos, Andreas
Hempel, Henry Hoffmann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic, Vitto-
rio Papadopoulos Alessandro, Suprio Ray, Molzam Sharifloo Amir, Stepan Shevtsov, Mateusz Ujma, and Thomas Vogel,
Software Engineering Meets Control Theory, Proceedings of the 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, May 2015.

[25] Michel Fliess and Cédric Join, Model-free control, International Journal of Control 86 (2013), no. 12, 2228–2252.
[26] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury, Feedback control of computing systems, John

Wiley & Sons, 2004.
[27] Herodotos Herodotou and Shivnath Babu, Profiling, what-if analysis, and cost-based optimization of mapreduce programs,

PVLDB 4 (2011), no. 11, 1111–1122.
[28] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant Agarwal, Application heartbeats:

A generic interface for specifying program performance and goals in autonomous computing environments, Proceedings
of the 7th international conference on autonomic computing, 2010, pp. 79–88.

[29] Zhongsheng Hou and Shangtai Jin, Data-driven model-free adaptive control for a class of mimo nonlinear discrete-time
systems, IEEE Transactions on Neural Networks 22 (2011), no. 12, 2173–2188.

[30] J.O. Kephart and D.M. Chess, The vision of autonomic computing, Computer 36 (2003), no. 1.
[31] Maria Kihl, Anders Robertsson, and Bjrn Wittenmark, Performance modelling and control of server systems using non-

linear control theory, Providing quality of service in heterogeneous environmentsproceedings of the 18th international
teletraffic congress - itc-18, 2003, pp. 1151 –1160.

[32] C. Klein, A.V. Papadopoulos, M. Dellkrantz, J. Durango, M. Maggio, K.-E. Arzen, F. Hernandez-Rodriguez, and E.
Elmroth, Improving cloud service resilience using brownout-aware load-balancing, Reliable distributed systems (srds),
2014 ieee 33rd international symposium on, 2014Oct, pp. 31–40.

[33] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez, Brownout: Building more robust
cloud applications, Proceedings of the 36th international conference on software engineering, 2014, pp. 700–711.

[34] Lennart Ljung, System identification: Theory for the user, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.
[35] Martina Maggio, Cristian Klein, and Karl-Erik Årzén, Control strategies for predictable brownouts in cloud computing,

IFAC proceedings volumes, 2014, pp. 689 –694.
[36] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann, Automated control of mul-

tiple software goals using multiple actuators, Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 373–384.

[37] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa, Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations, Proceedings of the 44th annual ieee/acm international symposium
on microarchitecture, 2011, pp. 248–259.

[38] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl, Proactive self-adaptation under uncertainty: A
probabilistic model checking approach, Proceedings of the 2015 10th joint meeting on foundations of software engineer-
ing, 2015, pp. 1–12.

[39] , Proactive self-adaptation under uncertainty: A probabilistic model checking approach, Proceedings of the 2015
10th joint meeting on foundations of software engineering, 2015, pp. 1–12.

[40] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl, Efficient decision-making under uncertainty for
proactive self-adaptation, Autonomic computing (icac), 2016 ieee international conference on, 2016, pp. 147–156.

[41] Gabriel A. Moreno, Alessandro V. Papadopoulos, Konstantinos Angelopoulos, Javier Cámara, and Bradley Schmerl, Com-
paring model-based predictive approaches to self-adaptation: Cobra and pla, Proceedings of the 12th international sym-
posium on software engineering for adaptive and self-managing systems, 2017, pp. 42–53.



Self-adaptation of software using automatically generated control-theoretical solutions 17

[42] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor, Runtime software adaptation: Framework, approaches, and
styles, Companion of the 30th international conference on software engineering, 2008, pp. 899–910.

[43] N.B. Rizvandi, J. Taheri, and A.Y. Zomaya, On using pattern matching algorithms in mapreduce applications, Ispa,
2011may, pp. 75–80.

[44] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar, On the value of user preferences in search-based software engi-
neering: A case study in software product lines, Proceedings of the 2013 international conference on software engineering,
2013, pp. 492–501.

[45] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes, Omega: Flexible, scalable schedulers
for large compute clusters, Proceedings of the 8th acm european conference on computer systems, 2013, pp. 351–364.

[46] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, Control-theoretical software adaptation: A systematic literature
review, IEEE Transactions on Software Engineering PP (2017), no. 99, 1–1.

[47] Stepan Shevtsov and Danny Weyns, Keep it simplex: Satisfying multiple goals with guarantees in control-based self-
adaptive systems, 24th acm sigsoft international symposium on the foundations of software engineering.

[48] Stepan Shevtsov, M. Usman Iftikhar, and Danny Weyns, Simca vs activforms: Comparing control- and architecture-based
adaptation on the tas exemplar, Proceedings of the 1st international workshop on control theory for software engineering,
2015, pp. 1–8.

[49] Stepan Shevtsov, Danny Weyns, and Martina Maggio, Handling new and changing requirements with guarantees in self-
adaptive systems using simca, Proceedings of the 12th international symposium on software engineering for adaptive and
self-managing systems, 2017, pp. 12–23.

[50] Vı́tor E. Silva Souza, Alexei Lapouchnian, William N. Robinson, and John Mylopoulos, Awareness requirements for
adaptive systems, Proceedings of the 6th international symposium on software engineering for adaptive and self-managing
systems, 2011, pp. 60–69.

[51] Vı́tor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos, (requirement) evolution requirements for adaptive
systems, Proceedings of the 7th international symposium on software engineering for adaptive and self-managing systems,
2012, pp. 155–164.

[52] D. Weyns, Software Engineering of Self-Adaptive Systems: An Organised Tour and Fu-
ture Challenges, Chapter in Handbook of Software Engineering (2017, Springer). (forthcoming;
https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf).

[53] Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Camara, Carlo Ghezzi, Vincenzo Grassi, Lars Grunske, Paola
Inverardi, Jean-Marc Jezequel, Sam Malek, Raffaela Mirandola, Marco Mori, and Giordano Tamburrelli, Perpetual assur-
ances for self-adaptive systems, Software engineering for self-adaptive systems iv: Assurances, lecture notes in computer
science, 2016.

[54] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer, Jochen Wuttke,
Jesper Andersson, Holger Giese, and Karl M. Göschka, On patterns for decentralized control in self-adaptive systems,
Software engineering for self-adaptive systems ii: International seminar, dagstuhl castle, germany, october 24-29, 2010
revised selected and invited papers, 2013, pp. 76–107.

[55] B. Wittenmark, K.J. Åström, and K.-E. Årzén, Computer control: An overview, 2002.
[56] Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant, Pradeep Padala, and Kang Shin, What does

control theory bring to systems research?, SIGOPS Oper. Syst. Rev. 43 (January 2009), no. 1, 62–69.
[57] Xiaoyun Zhu, Zhikui Wang, and S. Singhal, Utility-driven workload management using nested control design, American

control conference, 2006, 2006June, pp. 6 pp.–.


