Keep It SIMPLEX: Satisfying Multiple Goals with
Guarantees in Control-Based Self-Adaptive Systems

Stepan Shevtsov
Linnaeus University
Vaxj6, Sweden
stepan.shevtsov@Inu.se

ABSTRACT

An increasingly important concern of software engineers is
handling uncertainties at design time, such as environment
dynamics that may be difficult to predict or requirements that
may change during operation. The idea of self-adaptation is
to handle such uncertainties at runtime, when the knowledge
becomes available. As more systems with strict requirements
require self-adaptation, providing guarantees for adaptation
has become a high-priority. Providing such guarantees with
traditional architecture-based approaches has shown to be chal-
lenging. In response, researchers have studied the application
of control theory to realize self-adaptation. However, existing
control-theoretic approaches applied to adapt software systems
have primarily focused on satisfying only a single adaptation
goal at a time, which is often too restrictive for real applica-
tions. In this paper, we present Simplex Control Adaptation,
SimCA, a new approach to self-adaptation that satisfies mul-
tiple goals, while being optimal with respect to an additional
goal. SimCA offers robustness to measurement inaccuracy
and environmental disturbances, and provides guarantees. We
evaluate SimCA for two systems with strict requirements that
have to deal with uncertainties: an underwater vehicle system
used for oceanic surveillance, and a tele-assistance system for
health care support.

CCS Concepts

e Software and its engineering — Designing software;
e Computing methodologies — Computational control
theory;

Keywords

Self-adaptive system, control theory, simplex, multiple goals

1. INTRODUCTION

The ever growing demand on software has drastically in-
creased the burden on software engineers. Customers expect
software to cope with continuously changing conditions. They

Danny Weyns
KU Leuven, Belgium
Linnaeus University, Sweden
danny.weyns@kuleuven.be

expect the software to deal seamlessly with varying resources,
mask sudden failures, and adapt to changes in system goals.
Often, these changing conditions are difficult to predict at
design time and handling these uncertainties has become an
important concern of software engineers.

Self-adaptation is widely encouraged to address such un-
certainties [1, 2]. Self-adaptation handles uncertainties at
runtime, when the knowledge becomes available. To that end,
the system is equipped with a feedback loop that monitors the
system and environment and adapts the system to meet the re-
quirements under changing conditions. As more systems with
strict requirements require self-adaptation, providing guaran-
tees for adaptation has become a high-priority concern [3, 4,
5, 6]. Architecture-based approaches for self-adaptation [7, 8,
9], where feedback loops consist of components that realize
monitor-analyze-plan-execute (MAPE) functions, have been
widely used to ensure system goals under uncertainty. How-
ever, recent research has pointed out that providing assurances
for such systems is very challenging [10, 11], calling for new
perspectives on engineering self-adaptive systems.

More then a decade ago, Hellerstein et al. [12] argued for
using principles from control theory as a solution for run-
time adaptation with formal guarantees. This viewpoint has
recently gained increasing attention, e.g., [13, 14]. In this
approach, a software system is treated as a plant to be“ con-
trolled!, and a control feedback loop empowers the software
with self-adaptation capabilities, providing formal guarantees,
regardless of uncertain operating conditions [15, 16].

Recently, a strategy for applying control theory to com-
puting systems in a general way has been proposed in the
form of the Push-Button Methodology (PBM) [17]. PBM
can automatically build a controller of an adaptive software
system that rejects environmental disturbances, while provid-
ing control-theoretical guarantees for key properties. As the
approach is automated, PBM can be used by practitioners
with little control-theoretical background. However, PBM
deals only with one quantifiable goal at a time, which is often
too restrictive for real applications. For example, consider an
e-commerce website that should guarantee particular response
times for different categories of customers, using available
resources, while maximizing profit from advertisements. An-
other example is a video streaming service that should provide
a particular video quality for each class of costumers, em-
ploying the available computation facilities, while minimizing
congestions along the streaming paths to consumers.

”

'In control theory terminology, “plant” usually refers to a
physical system that is adapted. It is often called the managed
system by software engineers.

In our research, we focus at one relevant adaptation prob-
lem that requires satisfying multiple goals while optimizing
the solution according to an additional goal, such as the ex-
amples given above. A well-known approach to handle such
problems is the simplex method [18] and its variations. How-
ever, simplex cannot be applied “as is” to realistic software
problems as it can not handle the variety of uncertainties and
disturbances that are inherent to software systems. Simplex
has no mechanism for rejecting disturbances, transient noise,
measurements inaccuracies, etc., nor does it guarantee system
stability or absence of errors in the system output. Recent
work has explored a control-based approach to handle multi-
ple objectives [19], and pointed to its relevance for practice.
However, that approach has restrictions regarding the guaran-
tees it can provide and the engineering support it offers. We
further elaborate on this in Section 5.

In this paper we present a new approach called Simplex
Control Adaptation (SimCA) that aims at solving the prob-
lem of adaptation for multiple objectives with guarantees.
SimCA builds upon PBM and the simplex method, combining
strengths of both approaches. SimCA is able to find a system
configuration that satisfies multiple goals, reaches optimality
with respect to an additional goal, achieves robustness to
environmental disturbances and measurement inaccuracy, and
provides control-theoretical adaptation guarantees. To that
end, SimCA runs on the fly experiments on the software in
an automated fashion, builds a set of linear models of the
software at runtime, creates a set of tunable controllers that
operate on these models, and combines controller outputs us-
ing the simplex method to adapt the system. The controllers
of SiImCA use Kalman filters to dynamically adapt the linear
model in order to cope with disturbances and non-linearities.

The evaluation of SimCA is conducted in two steps. First,
we evaluate the control theoretical guarantees provided by the
approach, including system stability, settling time, absence
of overshoot and steady-state error, solution optimality, ro-
bustness, and detection of infeasible solutions. Not achieving
these guarantees may violate certain software qualities. For
example, lack of robustness guarantees may lead to instability
under disturbances, violating reliability requirements. A more
detailed mapping between guarantees and software qualities
is given in Section 4. Second, the effectiveness and generality
of SimCA is demonstrated on two cases: a UUV (unmanned
underwater vehicle) system performing surveillance missions,
and a service-based system for health care. These systems are
from different domains, but self-adaptation must guarantee
that the strict requirements of both systems are achieved
at runtime, regardless of the disturbances. In addition, we
provide a qualitative comparison of SimCA with the approach
presented in [19].

The remainder of the paper is structured as follows. A
motivating scenario for SimCA is introduced in Section 2.
Section 3 presents SimCA and explains how to build self-
adaptive systems with the approach. The formal evaluation
of guarantees provided by SimCA is given in Section 4. In
Section 5, SImCA is empirically evaluated using two cases.
Section 6 discusses related work. Finally, conclusions and
directions for future research are presented in Section 7.

2. MOTIVATING SCENARIO: UUV SYSTEM

We describe a UUV system (based on [20]) that we use as one
of the cases to evaluate SimCA in Section 5 and to illustrate
the technical description of SimCA in the next section. UUVs

are increasingly used for a wide range of tasks. Here we look at
UUVs used for oceanic surveillance, e.g., to monitor pollution
of an area. UUVs have to operate in an environment that
is subject to restrictions and disturbances: correct sensing
may be difficult to achieve, communication may be noisy, etc.,
requiring a UUV system to be self-adaptive.

Furthermore, there is a need for guarantees as UUVs have
strict requirements, i.e., the system should not impact the
ocean area, and since vehicles are expensive equipment that
should not be lost during missions.

The self-adaptive UUV system in our study that is used to
carry out a surveillance and data gathering mission is equipped
with 5 on-board sensors that can measure the same attribute
of the ocean environment (e.g., water current or salinity).
Each sensor performs scans with a certain speed and accuracy,
while consuming a certain amount of energy (see Table 1). A
scan is performed every second.

Table 1: Parameters of sensors of the UUV.
Uuv

Energy cons., Scan Speed, Accuracy,

on-board sensor J/s m/s %
Sensorl 170 2.6 97
Sensor2 135 3.6 89
Sensor3 118 2.6 83
Sensor4 100 3.0 74
Sensorb 78 3.6 49

The UUV system has to satisfy the following requirements:

R1: A segment of surface over a distance of S (100 km)
should be examined by the UUV within a given time ¢ (10
hours in the scenario);

R2: To perform the mission, a given amount of energy F is
available (5.4 MJ in the scenario);

R3: Subject to R1 and R2, the accuracy of measurements
should be maximized.

To realize the requirements, sensors can be dynamically
turned on and off during a mission. We assume that only
one sensor is active at a time, however, we use a combination
of sensors during each adaptation period. For example, to
perform a mission with energy consumption of 135 J/s we
may either use Sensor2 100% of the time, or use Sensorl 50%
of the time (using 170*0.5=85 J/s) and Sensor4 50% of the
time (using 100*0.5=50 J/s).

The requirements R1 and R2 are critical to the success of
the surveillance mission, but they may change at runtime due
to unpredictable events in the environment. In addition, the
adaptation task is not trivial because the system is affected
by different disturbances such as:

- Fluctuations in the expected behavior of the UUV (ac-
tual scanning speed or energy consumption differs from the
specification) up to £10% of the expected values;

- Inaccurate measurements: e.g., the monitoring mechanism
reports a scanning speed of 2.6 m/s instead of the actual value
of 2.2 m/s;

- Constant deviations of the sensor output due to a sensor
problem, e.g., a sensor starts consuming 50% more energy
than stated in the specification;

- Sensor failures;

- Gaussian or Random noise in the communication channel,
which may cause errors of the communicated data.

In summary, to realize its mission, the UUV needs to self-
adapt to changes in requirements and rejects different types of
disturbances. The achievement of goals must be guaranteed.

Problem definition: The general adaptation problem we
aim to solve is the following:

To guarantee the satisfaction of multiple goals and
optimize the solution according to another goal,
regardless of possible fluctuations in the system
parameters, measurement accuracies, requirement
changes, and dynamics in the environment that are
difficult to predict.

The UUV scenario offers one concrete instance of this general
problem. Defining and developing an adaptive solution for
this general problem introduces several key challenges. First,
the appropriate adaptation sensors (measured variables) and
actuators (knobs that can influence the software behavior)
must be carefully chosen. Second, the software system must be
modeled. Third, the appropriate adaptation mechanism that
controls the model and satisfies multiple goals, while rejecting
external disturbances, must be developed. Fourth, the system
must incorporate an optimization approach to optimize the
solution according to additional goal. The following section
proposes SimCA that aims to address these challenges.

3. SIMPLEX CONTROL ADAPTATION

To build an adaptive system with SimCA, the approach
requires four elements from a software engineer:

1. A working prototype of the software (plant).

2. A set of quantifiable goals to be controlled plus one op-
timization goal. For requirements with time-dependent
constraints (e.g. a constraint on the available energy to
be used in time window), we transfer the constraints to
setpoints that satisfy the constraints over time.

3. Tunable parameters (actuators) that can be used to
adapt the running system to address the goals.

4. Adaptation sensors® to measure the effect of the adap-
tation on the system.

With these four elements SimCA is able to build a self-
adaptive system that solves the adaptation problem formu-
lated in Section 2. In order to use SimCA, engineers do not
need to construct software models. Instead, the approach
works in three runtime phases:

e First, in the Identification phase, SImCA synthesizes
models that capture the dependency between the adap-
tation parameters and the measured system outputs.

e Second, in the Controller Synthesis phase, SimCA con-
structs an appropriate set of controllers for the synthe-
sized models.

e Third, in the Operation phase, the controllers carry
out control and the outcome of multiple controllers is
combined using the simplex method to optimally drive
the outputs of the system towards the set goals.

The three phases of SImCA are performed during system
operation. We describe the phases in detail in the following
subsections.

2Not to be confused with UUV sensors in the motivating case.

Control Measured
Goal Model | Signal T Plant output
s,] building u |2 a 0,

Figure 1: Identification phase of SimCA.

UUYV scenario

Before that, we illustrate the four elements required from a
software engineer to apply SimCA to the UUV system:

1. A working prototype is the UUV system itself.

2. The quantifiable goals are the scanning speed and energy
consumption, the optimization goal is the measurement
accuracy. We transform requirements R1 and R2 into
quantifiable goals as follows: we keep the average scan-
ning speed on a particular level such that the target
area of surface is examined in the given amount of time;
similarly, we keep the average energy consumption on a
particular level such that the mission is performed with
the available energy.

3. The actuator of the UUV system is the combination of
sensors that are used for performing the mission.

4. The sensor is the monitoring mechanism that measures
the scanning speed and energy consumption of the UUV
system during the mission.

3.1 Identification Phase

During the first phase, a set of n linear models of the
controlled system is automatically built, where n is the total
number of goals excluding the optimization goal. Each model
M3, i € [1,n], is responsible for one goal s;.

Similar to basic PBM, identification starts by systematically
feeding sampled values of the goal s; in the form of a control
signal u; to the plant and measuring their effect on the system
output O; (see Figure 1). The vector of control signals u;
used for identification looks as follows:?

u; = [mang, min; + 8, min; + 25, min; + 39, ..., maz;]

Where min; and max; are the minimal and maximum
achievable values for the i-th goal, ¢ is the sampling rate. § is
a tunable parameter chosen by the system engineer; by default
0 = (maz; —min;) *0.05. A higher sampling rate will provide
a more accurate model, but increase the identification time;
whether this is required depends on the domain.

During the Identification phase (and the Control Synthesis
phase, see below), the control signal w;(k) is automatically
translated (marked Trans. on Figures 1 and 2) to an actuation
signal before feeding it to the plant. A control signal may for
example be translated to the change of a parameter setting of
the system or the selection of a component or a service. This
translation is performed by the simplex method that serves as
a straightforward translator of control signals to an actuation
signal during the Identification and Control Synthesis phases.
Such simplified translation works because at this stage we
need an approximate model and not an optimal solution.

After recording all combinations of control signals and re-
sulting system outputs, the dependency between the control
signal u;(k — 1) and its effect on the measured output O;(k)
is captured by the coefficient a;; which is further used to build

34, is an array of elements, with u;(k) being the k-th element
of that array, where k equals to one adaptation period

controller C;. Coefficient «; is calculated based on linear
regression using the APRE tool [21]. As a result, a set of first
order linear models is obtained, representing the reaction of
the system to control signals for the different goals:

Oz(k) = o4 X Ui(k — 1) (Mz)

The model M; describes the system behavior, but does
not take into account small disturbances or sudden failures
that typically can occur in practical software systems. For
example, this model may not be able to deal with a particular
component failure at runtime.

Earlier work has show that M; is a linear model that is
practical and works for a variety of applications [17], and
this is confirmed by the two studies presented in Section
5. The different cases have shown that to be effective, the
model does not need to capture the precise (usually non-linear)
relationship between the control signal and the system output.
In addition, the synthesized controller has mechanisms (see
the following section) that allow to use M; even for non-linear
systems working under disturbances.

Exploring the effect of a range of values of a goal on the
system output during Identification may affect the realization
of a temporal constraint associated with that goal. This effect
was not taken into account in the original PBM [17]. To
ensure that the constraint is not violated, the Model building
module measures the time At; and resources AR, spent for
Identification, subtracts this amount from the available time
t; and resources R; respectively and automatically adjusts the
quantifiable goal s; accordingly:

R; — AR;
= 1
ST T AL (1)

UUYV scenario

We illustrate the Identification phase for the energy consump-
tion goal of the UUV system. According to Table 2, the
minimal available energy consumption is ming = 78J/s,
while the maximum is maxg = 170J/s. Then, by default,
0 = (maxg — ming) * 0.05 = 4.6. The model identification
starts with sending w;(0) = ming = 78.J/s to the plant that
is automatically translated by simplex to use Sensor 5 all
of the time, because Sensor 5 consumes exactly that amount
of energy according to specification. The goal of this pro-
cedure is to measure and record the actual output energy
consumption of the vehicle Og(1). After that, the plant re-
ceives u;(1) = ming + 0 = 82.6J/s, simplex translates it
to a corresponding combination of sensors to be used, and
the output Og(2) is measured again. When the values of
O; are measured for all k, coefficient «; is calculated with
the APRE tool, resulting in a system model for the energy
consumption goal of the UUV system. We observed a typical
value of a; for this model in the range 0.9...1.1. After the
Identification, the goal sg is adjusted according to the amount
of consumed energy and time (see eq. 1), for the UUV case:
sp = (5.4%10° — 0.2 % 10%) /(10 % 3600 — 0.5 * 3600) = 152.J/s

3.2 Controller Synthesis Phase

The second phase of SImCA, labeled controller synthesis,
consists of two sub-phases: controller building and controller
re-building, see Figure 2. Controllers are built once, when the
system starts, and may be rebuilt during system operation.

Controller Building: during this first sub-phase, a set of n
controllers is built using the set of models M;, i € [1...n],

Control Measured

. T output

Goal Error_|Controller| SlgnaLg Plant P g
s, e Ci u; :. Oi

Figure 2: Control Synthesis phase of SimCA.

each controller managing one goal.

A controller C; has one tunable parameter, called pole
denoted with p;. To maintain stability and avoid oscillations,
the pole value should belong to the open interval (0,1). The
pole is chosen by the controller designer and allows to trade-off
certain system properties (see discussion in Section 4).

As shown in [17], the system output equation, representing
the measured output O;(k) in response to a unit step® setpoint
s; is defined as follows:®

Oi(k) = si x (1= pf))

By using Z-transform — a frequency domain representation
of a discrete time control signal — on (M;) and (2), and by

analyzing the system input-output relationships, the following
controller equation can be obtained:

wilk) = wi(k — 1) + =P e (k= 1)

Qg

(Ci)

The synthesized controller C;, ¢ € [1,n], calculates the control
signal u;(k) at the current time step k depending on the

previous value of control signal u;(k — 1), model adjustment
coefficient a;, controller pole p; and the error e;(k — 1), with
€; = S; — Oz

Controller Rebuilding: during the second sub-phase, the
controllers handle inaccuracies in M,. To that end, the con-
trollers of SimCA incorporate two additional mechanisms
introduced by PBM:

1. Each controller uses a Kalman filter to constantly update
the value of «, adapting the linear model at runtime.
This mechanism allows to cope with small perturbations
that could not be tracked by non-adaptive M; and
assures robustness for non-linear behaving systems.

2. Each controller is equipped with a change point detection
mechanism, which allows to react to unexpected critical
changes in the system. The mechanism updates the
system parameters or, in some scenarios, re-initiates
the Identification phase and rebuilds M;. An example
of a critical change may be a software component that
suddenly becomes unavailable. Although requiring extra
computations, the mechanism is quite simple and makes
the controller extremely robust.

UUYV scenario

We illustrate Control Synthesis with examples. Assume that
the identification phase has produced a model for the energy
consumption goal with ag = 1. If the engineer has set the pole
for the controller to pg = 0.9, then the Controller Building
phase will synthesize the following controller:

UE(k‘)Iul(k—l)—f—O.l X@E(k—l) (3)

4Step in the setpoint of magnitude one — for example, when
scanning speed is required to change from 2 to 3 m/s.

5pk is p; to the power k.

If, during system operation the UUV slows down due to
unexpected underwater streams in some area, the Kalman
filter will change g accordingly and trigger controller re-
building. If the change point detection mechanism detects
a critical change, e.g. some of the UUV sensors fail, a re-
identification will be triggered resulting in a new value of ag
which will be updated in the controller equation.

3.3 Operation Phase

The third phase of SimCA, labeled operation also consists
of two sub-phases: control and optimization, see Figure 3.

Control: in the first sub-phase, the set of controllers effec-
tively perform control. Each controller C; manages one goal
i, rejects disturbances acting on the according output O;(k),
and provides an output signal u;(k) that is fed to simplex (see
Optimization below). The «; value of the controller can be
updated on the fly by the embedded Kalman filter to handle
non-linear system behavior (see Controller Rebuilding). The
change point detection mechanism can interrupt the controller
to deal with invasive changes of the system. SImCA will then
restart Identification, followed by Controller Building.

Optimization: during the second sub-phase, SImCA collects
all control signals u;(k) and the system parameters P(k),°
and passes these data to the simplex block. Simplex calculates
the actuation signal us, that drives the system towards an
output that satisfies all adaptation goals.

Optimization goal

Parameters P Disturbances

Control Actuation Measured

Goal 1 Error 1 signal 1 signal output

< X T,Controller gu »| Simplex 3 Plant P >

1 rOl 1 Ci 1 sx 0,...0,
Control

Goal n Error n |controller| signal n
Sn €n Cn Up
O,

Figure 3: Operation phase of SimCA.

Generally, the simplex method allows to find an optimal
solution to a linear problem written in the standard form:

max{c'z | Az < bz > 0} (4)

where z represents the vector of variables (to be determined),
c and b are vectors of (known) coefficients, A is a (known)
matrix of coefficients, and (-)™ is the matrix transpose [22].

SimCA uses a simplex variant with equalities (Az = b)
because we do not want simplex to change the effect of control
signals on the output signals. Instead, simplex is responsible
for seamless translation of control signals to actuation signals.

In SimCA each equation, except the last one, represents
a goal to be satisfied. The last equation ensures that the
system selects a valid actuation signal by constraining the
values that can be taken by elements of the vector z, e.g.
x > 0. The control signals u;(k) produced during the control
phase replace constants b, whereas matrix A and vector ¢*
are substituted with the monitored parameters P (k) of the
system. The goal of simplex is to find a proper actuation
signal usg, i.e., vector x.

For details on how simplex solves the system of equations
(4) we refer to the linear programming literature [22, 23, 24].

677(k) contains relevant parameters of system components
that can be measured.

UUYV scenario

Assume that the energy consumption goal is set to sg = 152
J/s. We illustrate how the controller calculate the control
signal at time k = 200, assuming that the control signal at
the previous adaptation step ug(199) = 149 and the amount
of energy consumed by the UUV at the previous adaptation
period Og(199) = 150J/s. By substituting the according
values in (3), we get the control signal value:

up(200) = 149 + 0.1 x (152 — 150) = 149.2

The controller will send this value to the simplex block.

To illustrate the optimization sub-phase, we rewrite (4) as
a system of equations using the UUV scenario:

Maximize Accuracy:

mazx[Acc1 X x1 + Acca X T2 + -+ 4+ Aces X x5]
Subject to:

Fixxi+FEes Xxzo+ -+ Es X x5 = w1
Vixaxi+Voxaze+---+ Vs Xx5 = U2 (5)
T+ T2+ a5 =1

Where: z; (with j € [1;5]) is the portion of time (in deci-
mals) the sensor j should be used during system operation;
Accj is the accuracy of sensor j; E; is the energy consumed
by sensor j; V; is the scanning speed of sensor j (for the con-
crete values of Accj, Ej;, Vj, see Table 1); and u1 and ug are
control signals received from energy consumption controller
and scanning speed controller respectively.

As it can be observed from the comparison of (4) and (5),
the monitored parameters P(k) of the system are the sensor
energy consumption E; and the scanning speed V; with the
active sensor j. Vector ¢ is replaced with accuracies Acc; of
sensors. The last equation of (5) ensures that at each time
instance during the mission one sensor is working. The vector
x represents the portion of time each sensor should be used
during system operation.

4. EVALUATION OF GUARANTEES

We start the evaluation of SimCA by formally analyzing
the adaptation guarantees provided by the approach.

4.1 Guaranteed Goal Achievement

The achievement of system goals (except the optimization
goal) is guaranteed by the controllers used in SimCA. Specifi-
cally, by using controllers we can formally prove the following
four system properties: stability, steady-state error, settling
time and overshoot. Stability relates to most software quali-
ties that are subject of adaptation and shows the ability of
an adaptation mechanism to achieve goal s;. For example,
lack of stability for a security goal implies periods with high
vulnerability of the system. If the system has zero steady-
state error, its goal s; is reached after a certain time K and
Oi(k) = si(k),k > K. K is called settling time, and shows
the time it takes for an adaptation mechanism to bring mea-
sured quality properties close to their goals. Settling time
is computed for a step in the setpoint of magnitude one —
e.g., demanding the scanning speed to vary from 2 to 3 m/s.
Settling time and steady-state error are also related to most
software qualities that are subject of adaptation. For example,
fast achievement of an energy consumption goal (with low set-
tling time) means spending less resources in a transient state.

Avoiding overshoot, that is, the controlled signal does not
exceed the goal before reaching its stable area, avoids penal-
ties on the respective software quality. E.g., an overshoot of
system response time may violate a service level agreement.
Figure 4 illustrates these system properties.

Controlled
‘ variable

Overshoot =™=“=7 ="~ =""y __

v(_ _______ S E—— ___}____

Goal

Transient state Steady state

—>>
Time

Settling time
Figure 4: Properties guaranteed by the controllers

The control system used in SimCA is designed to be stable
and avoid overshoots, since it has only a single pole and its
value p; belongs to the open interval (0, 1).

To evaluate the steady-state error (Ae) and unit-step settling
time (K) we recall the output equation (2). First, we calculate
the system output during steady-state, i.e. when k — co. As

p € (0,1), in this case p* — 0. From (2):
Oi(k = o0) =s5; x (1 —pf) = s (6)

Based on (6), the steady-state error equals: Ae =s; — O; = 0.
Theoretically, it will take infinite time for O; to converge
to the exact value of goal s;, i.e. to make Ae zero, we need
k — oo. However, the settling time is formally defined as the
time K in which the measured variable reaches a value very
close to the goal (usually it has reached a certain percentage
of the goal value — we denote this value with s;). Based on
this, O; can be replaced with (1 — As;) X s;, where As; is the
difference between s; and s; in percents. From (2) we get:

In Asi
(7)

In |ps|

From this equation it can be concluded that the settling
time K of every controller C; depends on the pole p;: higher
values of p; lead to slower output convergence to the goal value.
As; is a constant chosen by the system engineer. According
to [12, p.85], the common value of As is 0.02 (2%).

As we are using an instance of simplex method with equali-
ties (see Section 3.3), it will not change the effect of control
signal u; on the output signal O;. Hence, simplex will not
alter the mentioned above guarantees provided by controllers.

(l—ASi)XSizsix(l—pf)ék:

4.2 Guaranteed Optimality and Scalability

Simplex guarantees the optimization goal of the obtained
solution. The simplex method was proven to always find an
optimal solution (if it exists) to a linear problem [22, 23], such
as the one formulated in Section 3.3.

The scalability of SiImCA is also inherited from simplex. To
understand the scalability of simplex, an interested reader
may ask about the number of iterations required to solve a
problem using this algorithm. Examples shown in [25] require
(2m—1) iterations worst case, with m the number of equations.
Such cases would require too much computation. For practical
problems, the method usually finds a solution in just a few
iterations [18]. The mismatch between theory and practice is
not formulated yet, although a number of efforts have been
conducted, incl. the use of probabilistic models to synthesize

and solve linear programs to calculate the number of required
iterations. Additional details are provided in Section 6.

4.3 Guaranteed Robustness

By robustness we mean the amount of perturbation the
system can withstand while remaining in stable state or the
amount of inaccurate estimate in the model the system can
tolerate. Robustness directly influences system reliability. In
line with the formal assessment of basic PBM [17], conclusions
about the system robustness can be derived for SimCA in
a similar fashion: the value of the pole p; allows to trade
robustness for settling time K.

Formally, the amount of disturbance the system can with-
stand A(d) by using a controller presented in Section 3.2 can
be estimated as follows: 0 < A(d) < 1—2177‘
that the value of the pole p; defines how SimCA will react
to disturbances. For p; = 0.9, which is used in most of our
experiments, the measurement can be inaccurate by a factor
of 20, and the controller of SimCA will still adapt the system
to follow the goals. In general, higher values of p; lead to
better robustness while lower p; decreases the settling time.

This means

4.4 Detection of Infeasible Solution

The simplex method brings an additional guarantee for the
adaptation strategy: it detects infeasible solutions. According
to the principles of linear programming, every linear program
(including those solved by SimCA) is subject to one of the
following [22, 26]: (1) has an optimal solution; (2) has no
feasible solution (e.g., setting the scanning speed of a UUV
to 5 m/s which is unreachable with any of the sensors); (3)
has an unbounded optimal solution, i.e. the objective function
value seeks oo (or -00), which occurs if variable values can
grow indefinitely without violating any constraint.

As SimCA uses only equalities, it cannot produce an un-
bounded solution. However, when the goal is infeasible,
SimCA will converge to the nearest achievable value of the
according goal and alert the user that the goal is not reach-
able. Such clear detection of an infeasible solution offer an
advantage with respect to the basic PBM approach, for which
it is unclear if a non-zero error appears due to disturbances
or due to an unfeasible goal being set for the system.

4.5 Boundaries of Guarantees

First of all, the guarantees are achieved on the model; if the
system is not capable to identify a sufficiently good model
then the controller will not be able to achieve its goals and
guarantees. The importance of successful identification is one
of the main reasons to perform it at runtime in real operating
conditions. However, as practice shows, even with poor testing
of corner cases or transient behavior during identification, the
model is representative enough to provide the guarantees.

Second, the guarantees on achieving time-dependent require-
ments depend on correct measuring the time and resources
spent during identification and computing the adjustment of
the corresponding goal.

Third, the guarantees are provided after controllers are
built, meaning that control-theoretical guarantees do not apply
during the Identification and Controller Synthesis phases.

Fourth, in the current realization, SimCA cannot provide
guarantees when goals are added/removed at runtime or when
the system behavior/architecture is invasively changed.

"Details on how to obtain this formula can be found in [17].

S. EXPERIMENTAL EVALUATION

We empirically evaluate SimCA with two cases. Section 5.1
describes the experimental setting of the UUV case. Sec-
tion 5.2 shows the software adaptation performed by SimCA
when the goals of the system are changed and in response to
variations in the sensor behavior at runtime. In Section 5.3 we
show the guarantees provided by SimCA with the case study.
The scalability of our approach is tested by adding a panel of
sensors to the UUV in Section 5.4. The second case with Tele
Assistance System is described and evaluated in Section 5.5.
In addition, we provide a qualitative comparison of SimCA
with the approach presented in [19] in Section 5.6. Finally,
Section 5.7 discusses threats to validity. The experiments are
performed on a Dell Notebook with 2.7 GHz Core i7 processor,
and 16 GB 1600MHz DD3 RAM. All evaluation material is
available at the project website.”

5.1 Experimental Setting: UUV case

We use the UUV system described in Section 2 as a primary
case to evaluate SimCA. The system is implemented in a
Java simulation environment that allows to model and study
the behavior of software systems. The initial parameters of
the sensors are specified in Table 1. The actual data that is
used by the adaptation mechanism at runtime is subject to a
randomly distributed disturbance up to +10% of the expected
values, simulating fluctuations of actual parameters of sensors
(compared to their specification).

Adaptation is performed every 100 surface measurements
of the UUV system: 1 £ = 100 measurements, and a mea-
surement is performed each second. At each adaptation step
the application calculates the average measured value of the
i-th goal (e.g., energy consumption) during the past 100 mea-
surements. Then it calculates the error e; as the difference
between i-th setpoint (e.g., target energy consumption) and
the measured value of the i-th goal. The application also
monitors the accuracy of surface measurements.

The task of SimCA is to maximize the measurement accu-
racy by exploiting the available energy and set the scanning
speed to examine the required surface in the given time frame.
SimCA achieves this task by calculating the value of the actu-
ation signal, which represents the portion of time each sensor
{S1,...,55} is used during every adaptation period. As an
indication of the complexity of the data used in the evaluation:
the total number of sensor configurations that can be selected
in the UUV scenario is 5.5 x 106.

Due to high dynamics and the unpredictable nature of the
environment, the controller pole p; in SImCA is set to 0.9
which allows to reject errors/disturbances of high magnitude.
d is kept at a default value: & = (maz; — min;) * 0.05.

The application collects the UUV data to build performance
graphs, which are used to evaluate SimCA in the following
sections. The x-axis of the graphs are time instants k. Thus,
the y-axis shows the average values of the measured feature
per 100 surface measurements of the UUV system.

5.2 Adaptation Results

Figure 5 shows the adaptation results of SImCA on the UUV
system configured according to Table 1 and requirements set
according to UUV scenario (Section 2). Adaptation starts
with the Identification phase that is clearly visible when k
is between 0 and 20. At time k=20 the energy consumption

"http://homepage.Inu.se/staff/daweaa,/simplex.htm

J/S ‘E ! C ‘ ti ‘ Meas
150 K nergy Consumption - a e
100 | --- Goal
Error
50 u
0 | N | L | al .
m/s |- ‘ ‘ Scarlning épeed ‘ ! : _ Meas
3 _ ured
v - - - Goal
2 n Error
1f |
N
—S1
--- 82
S3
S4
....... S5
A Opti
90 |- ccuracy a o
75 u
60 u
| | | | | | |
0 50 100 150 200 250 300 k

Figure 5: UUV adaptation with runtime changes.

setpoint slightly increases based on the energy consumed
during identification (see Section 3.1). The Control Synthesis
phase, followed by the Optimization phase, starts after the
relationship between control signals u; (k) and system outputs
O;(k) is identified (from k equals 21 onwards). The two upper
plots in Figure 5 show that during Operation the system is
stable, i.e., the measured energy consumption and scanning
speed follow their goals. At k = 100 we change the available
energy change from 5.4 to 5.0 MJ, at £ = 160 we change
the distance to be scanned from 10 to 10.5 km. The plots
show that these changes in requirements lead to corresponding
changes in goals and adaptation of the system output.

Figure 5 also shows how SimCA reacts to changes in sensor
parameters and sensor failures. At k = 220,the measurement
accuracy of sensor S3 drastically decreases from 83% to 43%.
With such a low accuracy, S3 is not a part of the optimal
solution anymore and the system selects a better sensor S4
at k = 221, see the “Sensor usage” plot. At k = 290, S4 stops
working, which again leads to switching the sensors to the
optimal solution, while the measured energy consumption and
scanning speed of the UUV remain on the required level. At
this point the measurement accuracy decreases from 87% to
77%. It happens because without S4, to satisfy all goals, the
system is forced to use S5, which has lower accuracy.

The experiment ends at k = 360, i.e. after 10 hours of
time. The total distance scanned is 10.5 km, the amount of
consumed energy is 5 MJ. Over a series of 50 experiments, we
measured an error of less than 0.01% on these values.

5.3 Adaptation Guarantees

We now confirm the guarantees formally evaluated in Sec-
tion 4 with the UUV case study.

Guaranteed Goal Achievement. SimCA’s guarantees for
achieving the are confirmed by the data shown on Figure 5:

T T T
Consumption Meas
150 ured
- -- Goal
100 Error
50
0
S P N N P
m/s Scanning Speed [Scanning Speed Meas
3 N L ured
B B --- Goal
21 1 N Error
1k
N
% - ——S1
65 moos2
3 S3
35 |t sS4
i'!!j“ S5
0)
T T T T T T T T .
% Accuracy 4 Accuracy . Opti
mal
| | | | | | | |

0 50 100 150 200 k£ 0 50 100 150 200 Kk

pole p; = 0.9 pole p; = 0.2

Figure 6: The influence of controller pole on SimCA.

e The system is stable and converges without overshooting,
since it is designed to have only a single pole p; which
belongs to the open interval (0,1);

e According to the system output equation 2, the output
O; during steady-state equals s; which leads to a zero
steady-state error: Ae = s; — O; = 0. The absence of a
steady-state error can be observed, for example, on the
“Scanning Speed” plot when k > 25;

e The settling time K of every controller C; depends on the
pole p; and a constant As; chosen by the system engineer:

K = hl‘nAp_l. According to [12, p.85], the commonly

used value of As is 0.02 (2%). Hence K = 2022 — 40
adaptation steps. This means that changing the scanning
speed from 2.7 to 3.1 (step of amplitude 0.4) would take
around K = 40 % 0.4 = 16 adaptation steps. This
guarantee can be observed on the “Scanning Speed” plot

of Figure 5 when k is between 160 and 176;

Guaranteed Robustness. The next experiment shows the
effects of the controller pole p; on the tradeoff between system
robustness and settling time. For this, we add a random
disturbance of amplitude up to +25% of the expected values
to the energy consumption output signal. Figure 6 compares
the performance of controllers with p;, = 0.9 and p; = 0.2 in
such conditions. As described in Section 4, adaptation with
SimCA is influenced by the values of the pole.

First, a smaller pole leads to a shorter settling time. This ef-
fect can be observed when the distance requirement is changed
at k = 200. The system with a smaller pole (right plots) con-
verges to a new operational goal almost immediately, while
a system with a higher pole (left plots) needs 16 adaptation
steps to converge. Experimentally we determined that due to

J/s T T T | T] T T
Energy Consumption Energy Consumption Meas
185 0 R I o e e ured
P AANAAAMAN AN A A
- - - Goal
100 Error
50 - t -
Lo

0 L L
0 30 60 90 120 k0 30 60 90 120 £k

SimCA Simplex method

Figure 7: SimCA vs Simplex: constant disturbance.

fast convergence, the total average accuracy of measurements
is 0.1% higher for controller with lower pole.

Second, despite the decrease of the settling time, lowering
p; leads to weaker disturbance rejection. This property of
adaptation mechanism of SimCA can be observed after k =
120. The system with p; = 0.2 unsuccessfully tries to find
an optimal solution until £ = 200. The system with p; = 0.9
continues working as expected. Hence, the system with lower
pole is not reliable under disturbances of high magnitude.

Another benefit of a high p; value is less oscillation of sensor
usage and a smoother accuracy curve (compare according plots
on Figure 6). This means that a higher pole value leads to a
system that is less responsive to variations in parameters but
at the same switches less between solutions.

In addition to rejecting noise and measurement inaccuracy,
SimCA can reject constant disturbances. E.g., due to an error,
a monitor that measures the vehicle energy consumption can
constantly decrease the measured value by 15J/s. The plot on
the left side of Figure 7 shows the behavior in such a scenario.
Although monitoring is not working properly, SImCA still
adapts the system by defining proper relationship between
control signal u;(k) and system output O; (k).

Unlike SimCA, the pure simplex method fails at guaran-
teeing the control-theoretical properties such as disturbance
rejection. Hence, the simplex method produces an incorrect
output, see the right plot of Figure 7.

Detection of Infeasible Solution. Figure 8 shows the
detection of an infeasible solution. The energy consumption
remains at the required level during the entire experiment.
Initially, we set the goal distance to be examined to 10 km.
After Identification (k>20), the system functions normally.
At k = 150 the total distance to be examined changes to 13
km, hence the output scanning speed grows until reaching its
maximum feasible value of 3.2m/s at k = 155; and the user is

J/s T E T G T " l T T Meas
150 LA nergy onsumption _ a ured
100 | --- Goal
Error
o |
0 | P b | v |
m/s T T p— ™1 T
Scahning Speed Meas
3 w ured
a , - - - Goal
e B I B ety 7 Error
1L \ N\
0 M | I \ \ \ \
0 50 100 150 200 250 300 k

Figure 8: Detection of Infeasible Solution in SimCA.

J/s

T T T T
Energy Consumption Mefcxls
1 | ure
60 " - - - Goal
120 | Error
0 | | | | |
m/s T T - T T T T
7L Scanning Speed i Meas
ured
- - - Goal
6\ R N Error
0 | | | | | I |
% T T T T T T T
100 - Sensor Combination Used T 51456
- - - S2+S6
65 | Ao . S2+S7
35 [T e i berene T e el 53456
: SRR T (RSN Sl T
0 !) EELTI LY S R RO B | o S44S6
i’ ‘ ‘ A ‘ ‘ ‘ ‘ Opti
90 | ccuracy i Ot
75 o
60 [o
I I I I I I I
0 50 100 150 200 250 300 k

Figure 9: SimCA with 25 sensor combinations.

notified about the infeasible solution.

At k = 270, we change the distance requirement to an un-
reachable value of 9 km and the scans start with the minimum
possible speed among those sustaining energy consumption at
the goal, and the user is notified of the infeasible goal.

It is worth mentioning that getting an infeasible solution
does not necessarily mean that the concrete goal is entirely
unreachable. For example, the scanning speed of 3.6m/s
can be achieved by using S2 and S5. However, the energy
consumption goal of 150.J/s will be violated in such scenario as
both mentioned sensors has lower energy consumption. Hence,
in case of an infeasible solution the system may inform the
user about the contradictory goals set for the system.

5.4 Scalability of SimCA

To demonstrate the scalability of SimCA we extend the
UUV case by significantly increasing the number of possible
actuation options (combinations of sensors). In particular, we
consider now an UUV equipped with two sensor panels, one on
the left side and one on the right side. Each panel is provided
with 5 on-board sensors that monitor a surface equal to the
surface monitored by the single panel in the original case. The
panels simultaneously monitor the respective surface, hence,
a combination of two sensors (one from each panel) is used
at the same time. The sensors have characteristics similar to
those in Table 1. Due to space constraints, we refer to the
project website for a detailed overview of the parameters of
sensor combinations (energy consumption, scanning speed,
and accuracy). The task of SimCA is to choose among 25
sensor combinations in order to satisfy the following goals:

R1: The underwater vehicle must examine S = 210 km of
surface within a period of ¢t = 10 hours (i.e., the scanning
speed = S/t = 5.83 m/s).

R2: The amount of available energy E is limited to 5.3 MJ

(i.e., mission energy consumption = E/S = 147 J/s).

Note that the scanning speed specified for a combination of
two sensors is double the value of the vehicle speed as both
panels scan surface in parallel.

Figure 9 shows results of a scalability scenario with 2 sensor
panels working in parallel. The sensor data, as in the previ-
ous experiments, is subject to random disturbances of small
amplitude. In general, the system shows the same adaptation
behavior (convergence to the goal value, adaptation to sensor
parameters change, etc.) as in the case of a single sensor
panel, e.g. the change of goals at kK = 100 and 160 switches
the sensor combination of the optimal solution. The ‘Sensor
Combination Used” plot shows that during operation only
6 of the 25 sensor combinations are used for this scenario.
However, note that during Identification (k = 0 to 20) other
sensor combinations are tested as well.

As SimCA has the scalability properties of simplex, we can
conclude that increasing the number of on-board sensors will
not change the adaptation outcomes.

5.5 Evaluation Scenario 2: TAS

To show the generality of SimCA, we evaluate the approach
with a second case: the TAS exemplar [27]. TAS is a service-
oriented application that provides remote health support to
patients. The main goal of TAS is to track a patient’s vital
parameters in order to adapt the drug or drug doses when
needed, and take appropriate actions in case of emergency.
To satisfy this goal, TAS combines three types of services in
a workflow, shown on Figure 10.

Change drug

Incoming . i TAS
request Medical Change doses Drug Service output
Service]7

Trigger alarm | ajarm Service

Figure 10: TAS workflow.

For service-based systems such as TAS, the functionality
of each service can be implemented by multiple providers
that offer services with different quality properties: reliability,
performance, and cost. The system design assumes that these
properties can be quantified and measured. E.g., reliability is
measured as a percentage of service failures, while performance
is measured as the service response time. At runtime, it is
possible to pick any of the provided services.

We consider that five service providers offer the Medical
Service, three providers offer the Alarm Service and only one

Table 2: Properties of all services used in TAS.

Fail.rate, Resp.time, Cost,
Name . .
% time units ¢
S1 Medical Service 1~ 0.06 22 9.8
S2 Medical Service 2 0.1 27 8.9

Service

S3 Medical Service 3 0.15 31 9.3
S4 Medical Service 4 0.25 29 7.3
S5 Medical Service 5 0.05 20 11.9
AS1 Alarm Service 1 0.3 11 4.1
AS2 Alarm Service 2 0.4 9 2.5
AS3 Alarm Service 3 0.08 3 6.8
D Drug Service 0.12 1 0.1
Requirements min 30 9

T
15 Cost -+ —— Meas
L ured
10 fir - v —{ --- Goal
5 Error
0 MI\\A el "\u [WRTRRETY MY TR WA TRV DO oo)
tu T T T T T T T T T
Response Time _ Meas
30 |- -1 ured
Mt |-
20 |- ' | --- Goal
Error
10 N
0 D\mm s sbibe st ade i N I . I~
% T T T T T T T T T
100 | Medical service invocations B 51
00 S N T S92
L Ioap
05 A IHU':J-‘A“"’“W"'E :
35 '-I: \‘:_,l_ H
o ML :
% T T T T T
Alarm service invocations
65 ffi 1 '
f |
35 1 k s
W i]
0 | I | IS T T |
% T T 1 T T T T Opti
0.4 Fail Rate —
Ave
0.2 rage

0 | |
0 50 100 150 200 250 300 350 400 450 &k

Figure 11: SimCA on TAS scenario.

provider offers the Drug Service. Table 2 shows example
properties of available services based on data from [28].

The properties of the whole TAS system depend on the
choice of concrete service providers that process user requests.
For example, invoking S1 and AS1 will lead to the failure rate
TASpr = Slpr + AS1pr = 0.36%, while invoking M S2 and
D will lead to the failure rate TASrr = S2rr+Drr = 0.22%
The system requirements are the following:

R1. The average cost for invoking TAS service is set to 9¢

R2. The expected average response time is 30 time units

R3. Subject to R1 and R2, the failure rate of TAS should
be minimized.

Unlike the UUV case, the TAS is expected to run contin-
uously. The requirements R1-R3 and the properties of the
services may change at runtime and the system should adapt
accordingly. The adaptation task is to decide, for each re-
quest with a patient’s vital parameters, which combination of
services to select such that the requirements are satisfied.

The TAS case is realized based on the TAS exemplar [27].
The results of SiImCA applied to a TAS scenario are shown in
Figure 11. The adaptation works as intended: system outputs
follow the goal changes at £ = 150 and 250, the optimal
solution is changed when S5 stops responding at k£ = 370. As
services in TAS fail randomly, the optimal value of fail rate
oscillates. However, on average (see the purple line on the
“Fail Rate” plot) it decreases from ~0.37% to ~0.22% when
more resources are available to the application at k£ = 150.
Note that SimCA manages to keep the failure rate low with a
more strict demand of response time from k = 250 onwards.

The TAS case confirms the results obtained with the UUV
study. It supports the generality of the approach by showing
that SimCA is effective in adapting software systems indepen-
dent of concrete goals or software components that take part
in the adaptation.

5.6 Comparison of SimCA with AMOCS

Recently, [19] proposed an interesting approach for Au-
tomated Multi-Objective Control of Self-adaptive software
design (AMOCS in short). AMOCS automatically constructs
a system of cascaded controllers to deal with multiple goals.
Unfortunately, no replication package was available to quanti-
tatively compare AMOCS with SimCA. Therefore, we perform
a qualitative comparison based on the reported results.

Compared to SImCA, AMOCS has the advantage that it
does not require the extra optimization step with simplex.
Furthermore, the approach supports two schemes for ordering
goals: user-defined prioritization of goals, and automatic or-
dering where the controller automatically ranks goals based
on available actuators to achieve as many goals as possible.

However, SimCA’s formal guarantees go significantly beyond
these of AMOCS reported in [19]:

e SimCA provides guarantees for robustness and steady-
state error; AMOCS’ “robustness analysis is system-
dependent and unsuitable for an automated control
strategy” [19], while steady-state error is not analyzed.

e Simplex provides optimal solutions, while AMOCS “uses
systematic or randomized exploration of solution sub-
space which introduces an approximation of the optimal
solution” [19].

e AMOCS cannot provide guarantees for time-dependent
goals (such as the energy consumption goal in the UUV
case) because it does not take into account resources
spent on learning.

e “Short overshoots are expected in AMOCS” [19]; SimCA
can avoid overshoots.

SimCA also provides important engineering support not
covered by AMOCS:

e SimCA supports trading settling time with robustness
(pole placement). In AMOCS, settling time can just be
set based on domain characteristics.

e Sampling and model learning is automated in SimCA.
AMOCS requires specialized knowledge and extra efforts
for this (e.g., quasi-Montecarlo and grid sampling [19]).

e AMOCS “requires the number of knobs to be greater
than or equal to the number of goals” [19]. Finding
enough knobs may not be trivial or even be artificial
(consider for example the TAS case).

In conclusion, SimCA contributes with a novel control-
based approach for satisfying multiple goals that significantly
improves over AMOCS, both in terms of the guarantees it
provides and the engineering support it offers.

5.7 Threats to Validity

SimCA can handle one class of adaptation problems (sat-
isfying multiple goals, while optimizing one additional goal),
but this class of problems applies to a significant number of

systems, as illustrated with the cases used in this paper and
for example also those used in [19]. Supporting other types of
adaptation goals is subject of future work.

We used standard controller guarantees. In Section 4.1,
we provide an initial mapping of the controller guarantees
to software quality guarantees. However, additional research
is required both to refine and extend this mapping and to
understand the coverage of the guarantees that can be pro-
vided with the standard controller properties. We did not test
the impact of § on the model quality/guarantees in different
operating environments; this could be a part of future work.

Regarding the scope of applicability of SimCA. First, the ap-
proach is not applicable to systems undergoing drastic changes
in their behavior at runtime as continuous re-identification is
very costly. Second, SimCA requires that goals can be quanti-
fied as a setpoint, which may not be easy for all properties;
an example is security. Third, in the experimental setting we
have used only some types of disturbances (e.g., sensor failures
and noise). Understanding the impact of other disturbance
on the adaptation properties of SimCA requires additional
evaluation. We want to highlight that in the current state of
the research in control-based software adaptation, it is diffi-
cult to outline precise criteria that delineate which systems
can/cannot be supported by SimCA (and other approaches
such as AMOCS). The study and empirical evaluation of new
approaches can contribute to build up this knowledge.

We evaluated SimCA in two domains, focusing on adaption
for a typical set of stakeholder requirements (resource usage,
performance, reliability, cost). While these systems can be
considered as representative instances of a significant family
of contemporary software systems, additional evaluation is
required to validate SimCA for other types of systems.

Finally, we evaluated SimCA for simulated systems. This
is inline with the evaluation conducted by others such as [29,
28, 30]. However, further evaluation of SimCA is required to
confirm the evaluation results in real deployed systems.

6. RELATED WORK

The problem of handling multiple goals in self-adaptation
is obviously not new. Most of the existing research, including
those in architecture-based adaptation and linear program-
ming, solve this problem by introducing an optimization task
that trades off the conflicting qualities looking for an optimal
solution. These solution uses many different techniques such
as preemption [31] to give preference to more time-critical
adaptation requirements, utility functions [32, 33, 34] to op-
timize component/service selection based on weights of QoS
criteria, estimates of performance models [35] to select ser-
vices with optimal response time, linear programming [36]
to deal with different operating environments and conflicting
QoS requirements, or combine linear programming with local
search [37] to find configurations with minimum cost, and
hybrid approaches [38] that first decompose end-to-end QoS
constraints into local QoS constraints and then perform local
selections. Most of these approaches do not provide the broad
set of formal guarantees provided by SimCA. Furthermore,
the computational costs of most of the proposed solutions
grow exponentially with the size of the problem. SimCA can
rely on the scalability of simplex as shown in the evaluation.

An advanced example of an architecture-based solution is
the QoSMOS framework [27], which also uses the TAS exem-
plar for evaluation. QoSMOS employs runtime quantitative
verification to provide formal guarantees for satisfying multiple

QoS goals, while optimizing cost. The control-theoretical guar-
antees provided by SimCA are out of focus in [28]. However,
the main difference is that QoSMOS requires a set of tools that
need to be glued together to realize the feedback loop, while
with SimCA, the feedback loop is relatively straightforward
and derived automatically.

Besides [19], another approach that trades-off different
qualities and provides adaptation guarantees is presented
in [16] casting a discrete time Markov model for reliability
requirements to a dynamic system. The synthesized controller
trades reliability for cost by solving an optimization problem.
In [39], compared an initial version of SimCA with Activ-
FORMS [40], a formally founded architecture-based approach
for self-adaptation. The evaluation underlines the pros and
cons of both approaches in terms of robustness to disturbances
and types the guarantees that can be provided.

Simplex is a proven and practical optimization method [22].
Several variants have been developed for specific classes of
problems, e.g. [25]. Simplex and its variants do not require an
exponentially growing number of iterations when the problem
space increases and do not depend on the structure of equa-
tions. Today, Simplex remains a very popular optimization
method that is used in a wide variety of domains; recent exam-
ples are [34] where the method was used to support exploring
optimal controller parameters for complex industrial systems,
and [41] where simplex was used to support the exploration of
the large design space of a cyber-physical system architecture.
Another widespread method to solve optimization tasks is
called the interior point method. The choice of simplex over
the interior point method in SimCA was based on the scope
of the problem: the interior point method is faster but only
for specific (usually very large) problems [42].

[43] compared control-theoretical and optimization ap-
proaches, showing that continuous controller feedback offers
higher potential to meet system goals under constantly chang-
ing loads, and provides better settling time and less over-
shooting. Contrary to using either a control-theoretical or an
optimization approach, SimCA integrates the simplex opti-
mization method with a control-theoretic method (enhanced
version of PBM) to endow software systems with the self-
adaptive capabilities, exploiting the best of both worlds.

7. CONCLUSIONS

In this paper we presented SimCA: a new approach that
allows building self-adaptive software systems that satisfy mul-
tiple goals, while reaching optimality with respect to an extra
goal. In addition, SimCA achieves robustness to environmen-
tal disturbances and measurement inaccuracy, and provides
guarantees for the adaptation results. The effectiveness of
SimCA was formally evaluated and demonstrated on two cases
with strict requirements.

SimCA contributes towards the application of formal tech-
niques to adapt the behavior of software systems, which is
one key approach for providing guarantees. At the same time,
by automatically building a control mechanism that adapts
the software, SimCA does not require a strong mathematical
background from a designer, which is a key aspect to pave the
way for software engineers to use the approach in practice.

In future research, we plan to study the impact of é on
the model and extend SimCA to handle on the fly adding
and removing goals. Our long term goal is to study and de-
velop reusable control-based adaptation solutions that provide
assurances for different types of goals.

8.
1]

[11]

[12]

[13]

REFERENCES

B. H. Cheng et al., “Software engineering for
self-adaptive systems: A research roadmap,” in Software
Engineering for Self-Adaptive Systems. LNCS vol. 5525,
Springer, 2009.

R. de Lemos et al., “Software engineering for
self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II.
LNCS, Springer, 2012.

G. Tamura, N. Villegas, H. Muller, J. P. Sousa,

B. Becker, G. Karsai, S. Mankovskii, M. Pezze,

W. Schaefer, L. Tahvildari, and K. Wong, “Towards
practical runtime verification and validation of
self-adaptive software systems,” in Software Engineering
for Self-Adaptive Systems II, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 7475.

J. Camara, R. de Lemos, C. Ghezzi, and A. Lopes,
Assurances for Self-Adaptive Systems: Principles,
Models, and Techniques, ser. Lecture Notes in Computer
Science, Vol. 7740. Springer, 2013.

B. H. Cheng, K. Eder, M. Gogolla, L. Grunske,

M. Litoiu, H. Muller, P. Pelliccione, A. Perini,

N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and
N. Villegas, “Using models at runtime to address
assurance for self-adaptive systems,” in
Models@run.time, ser. Lecture Notes in Computer
Science. Springer, 2014, vol. 8378, pp. 101-136.

D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and

T. Ahmad, “A survey of formal methods in self-adaptive
systems,” in Proceedings of the Fifth International C*
Conference on Computer Science and Software
Engineering, ser. C3S2E ’12. New York, NY, USA:
ACM, 2012, pp. 67-79. [Online]. Available:
http://doi.acm.org/10.1145/2347583.2347592

P. Oreizy, N. Medvidovic, and R. Taylor,
“Architecture-based runtime software evolution,” in
ICSE, 1998.

J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge,” FOSE, 2007.

D. Weyns, S. Malek, and J. Andersson, “Forms:
Unifying reference model for formal specification of
distributed self-adaptive systems,” ACM Trans. Auton.
Adapt. Syst., 2012.

R. Calinescu, C. Ghezzi, M. Kwiatkowska, and

R. Mirandola, “Self-adaptive software needs quantitative
verification at runtime,” Commun. ACM, vol. 55, no. 9,
pp. 6977, Sep. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2330667.2330686

D. Weyns, N. Bencomo, R. Calinescu, J. Cdmara,

C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J.-M.
Jezequel, S. Malek, R. Mirandola, M. Mori, and

G. Tamburrelli, “Perpetual Assurances in Self-Adaptive
Systems,” Software Engineering for Self-Adaptive
Systems: Assurances (Dagstuhl Seminar 13511), 2014.
[Online]. Available: http://homepage.lnu.se/staff/
daweaa/papers/2015Dagstuhl.pdf

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. Hempel, H. Hoffmann,

P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Misailovic, V. Papadopoulos, Alessandro, S. Ray,

M. Sharifloo, Amir, S. Shevtsov, M. Ujma, and T. Vogel,
“Software Engineering Meets Control Theory,” in
Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, Firenze, Italy, May 2015. [Online|. Available:
https://hal.inria.fr/hal-01119461

R. de Lemos, D. Garlan, and H. Giese, “Software
Engineering for Self-Adaptive Systems: Assurances,
Dagstuhl Seminar 13511,” 2013.

Y. Brun et al., “Engineering self-adaptive systems
through feedback loops,” ser. Lecture Notes in Computer
Science, vol. 5525, 2009.

A. Filieri, C. Ghezzi, A. Leva, and M. Maggio,
“Self-adaptive software meets control theory: A
preliminary approach supporting reliability
requirements,” in Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference
on, Nov 2011, pp. 283-292.

A. Filieri, H. Hoffmann, and M. Maggio, “Automated
design of self-adaptive software with control-theoretical
formal guarantees,” in Proceedings of the 36th
International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp.
299-310. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568272

G. B. Dantzig, Mazimization of a Linear Function of
Variables Subject to Linear Inequalities, in Activity
Analysis of Production and Allocation. New York:
Wiley, 1951, ch. XXI.

A. Filieri, H. Hoffmann, and M. Maggio, “Automated
multi-objective control for self-adaptive software design,”
in European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 2015.

M. Seto, L. Paull, and S. Saeedi, “Introduction to
autonomy for marine robots,” in Marine Robot
Autonomy, M. L. Seto, Ed. Springer New York, 2013,
pp. 1-46.

M. Maggio and H. Hoffmann, “Arpe: A tool to build
equation models of computing systems,” in Presented as
part of the 8th International Workshop on Feedback
Computing. San Jose, CA: USENIX, 2013.

G. B. Dantzig and M. N. Thapa, Linear Programming 1:
Introduction. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 1997.

G. B. Dantzig and M. Thapa, Linear Programming 2:
Theory and extensions, ser. Springer series in operations
research. New York: Springer, 2003.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C: The Art of Scientific
Computing. New York, NY, USA: Cambridge
University Press, 1988.

V. Klee and G. J. Minty, “How good is the simplex
algorithm,” 1972.

T. S. Ferguson, “Linear Programming: A Concise
Introduction.”

D. Weyns and R. Calinescu, “Tele assistance: A
self-adaptive service-based system exemplar,” in
Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, Firenze, Italy, 2015. [Online]. Available:

[28]

[29]

[30]

[31]

homepage.lnu.se/staff/daweaa/papers/2015SEAMS.pdf
R. Calinescu, L. Grunske, M. Kwiatkowska,

R. Mirandola, and G. Tamburrelli, “Dynamic qos
management and optimization in service-based systems,”
Software Engineering, IEEE Transactions on, vol. 37,
no. 3, pp. 387-409, May 2011.

I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
“Model evolution by run-time parameter adaptation,” in
International Conference on Software Engineering, 2009.
R. Calinescu, S. Gerasimou, and A. Banks, Self-adaptive
Software with Decentralised Control Loops. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp.
235-251. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-46675-9_16

R. Raheja, S.-W. Cheng, D. Garlan, and B. Schmerl,
“Improving architecture-based self-adaptation using
preemption,” in Proceedings of the First International
Conference on Self-organizing Architectures, ser.
SOAR’09. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 21-37. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1880569.1880572
S.-W. Cheng, D. Garlan, and B. Schmerl,
“Architecture-based self-adaptation in the presence of
multiple objectives,” in Proceedings of the 2006
International Workshop on Self-adaptation and
Self-managing Systems, ser. SEAMS ’06. New York,
NY, USA: ACM, 2006, pp. 2-8. [Online]. Available:
http://doi.acm.org/10.1145/1137677.1137679

Q. Liang, X. Wu, and H. C. Lau, “Optimizing service
systems based on application-level qos,” Services
Computing, IEEE Transactions on, vol. 2, no. 2, pp.
108-121, April 2009.

H. Chen and J. Xu, “Exploring optimal controller
parameters for complex industrial systems,” in Cyber
Technology in Automation, Control, and Intelligent
Systems (CYBER), 2015 IEEE International Conference
on, 2015.

C. Ghezzi, V. Panzica La Manna, A. Motta, and

G. Tamburrelli, “Performance-driven dynamic service
selection,” Concurrency and Computation: Practice and
Ezperience, vol. 27, no. 3, 2015.

V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti,
and R. Mirandola, “Qos-driven runtime adaptation of

[37]

[38]

[39]

[40]

[41]

[42]

[43]

service oriented architectures,” in Furopean Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering,
2009.

D. Ardagna, G. Gibilisco, M. Ciavotta, and

A. Lavrentev, “A multi-model optimization framework
for the model driven design of cloud applications,” in
Search-Based Software Engineering, ser. Lecture Notes
in Computer Science. Springer, 2014, vol. 8636.

S. X. Sun and J. Zhao, “A decomposition-based
approach for service composition with global qos
guarantees,” Information Sciences, vol. 199, 2012.

S. Shevtsov, M. U. Iftikhar, and D. Weyns, “SimCA vs
ActivFORMS: Comparing control- and
architecture-based adaptation on the TAS exemplar,” in
Proceedings of the 1st International Workshop on Control
Theory for Software Engineering, ser. CTSE 2015. New
York, NY, USA: ACM, 2015, pp. 1-8. [Online].
Available: http://doi.acm.org/10.1145/2804337.2804338
M. U. Iftikhar and D. Weyns, “Activforms: Active
formal models for self-adaptation,” in Proceedings of the
9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, ser. SEAMS
2014. New York, NY, USA: ACM, 2014, pp. 125-134.
[Online]. Available:
http://doi.acm.org/10.1145/2593929.2593944

J. Finn, P. Nuzzo, and A. Sangiovanni-Vincentelli, “A
mixed discrete-continuous optimization scheme for
cyber-physical system architecture exploration,” in
IEEE/ACM International Conference on
Computer-Aided Design, 2015.

M. H. Wright, “The interior-point revolution in
optimization: history, recent developments, and lasting
consequences,” Bull. Amer. Math. Soc. (N.S, vol. 42, pp.
39-56, 2005.

Y. Diao, C. W. Wu, J. Hellerstein, A. Storm,

M. Surenda, S. Lightstone, S. Parekh,

C. Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco,
“Comparative studies of load balancing with control and
optimization techniques,” in American Control
Conference, 2005. Proceedings of the 2005, June 2005,

pp. 1484-1490 vol. 2.

