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1 Introduction

VeriFast is a program verification tool for verifying certain correctness properties of single-threaded and
multithreaded C1 programs. The tool reads a C program consisting of one or more .c source code files
(plus any .h header files referenced from these .c files) and reports either “0 errors found” or indicates the
location of a potential error. If the tool reports “0 errors found”, this means2 that the program

• does not perform illegal memory accesses, such as reading or writing a struct instance field after
the struct instance has been freed, or reading or writing beyond the end of an array (known as a
buffer overflow, the most common cause of security vulnerabilities in operating systems and internet
services) and

• does not include a certain type of concurrency errors known as data races, i.e. unsynchronized
conflicting accesses of the same field by multiple threads. Accesses are considered conflicting if at
least one of them is a write access. And

• complies with function preconditions and postconditions specified by the programmer in the form of
special comments (known as annotations) in the source code.

Many errors in C programs, such as illegal memory accesses and data races, are generally very difficult
to detect by conventional means such as testing or code review, since they are often subtle and typically
do not cause a clean crash but have unpredictable effects that are difficult to diagnose. However, many
security-critical and safety-critical programs, such as operating systems, device drivers, web servers (that
may serve e-commerce or e-banking applications), embedded software for automobiles, airplanes, space
applications, nuclear and chemical plants, etc. are written in C, where these programming errors may
enable cyber-attacks or cause injuries. For such programs, formal verification approaches such as VeriFast
may be the most effective way to achieve the desired level of reliability.

To detect all errors, VeriFast performs modular symbolic execution of the program. In particular,
VeriFast symbolically executes the body of each function of the program, starting from the symbolic state
described by the function’s precondition, checking that permissions are present in the symbolic state for
each memory location accessed by a statement, updating the symbolic state to take into account each
statement’s effect, and checking, whenever the function returns, that the final symbolic state satisfies the
function’s postcondition. A symbolic state consists of a symbolic heap, containing permissions (known as
chunks) for accessing certain memory locations, a symbolic store, assigning a symbolic value to each local
variable, and a path condition, which is the set of assumptions about the values of the symbols used in the
symbolic state on the current execution path. Symbolic execution always terminates, because thanks to
the use of loop invariants each loop body needs to be symbolically executed only once, and symbolically
executing a function call uses only the function’s precondition and postcondition, not its body.

We will now proceed to introduce the tool’s features step by step. To try the examples and exercises
in this tutorial yourself, please download the release from the VeriFast website at

http://www.cs.kuleuven.be/~bartj/verifast/

. You will find in the bin directory a command-line version of the tool (verifast.exe), and a version that
presents a graphical user interface (vfide.exe).

2 Example: illegal access.c

To illustrate how VeriFast can be used to detect programming errors that are difficult to spot through
testing or code review, we start by applying the tool to a very simple C program that contains a subtle
error.

Please start vfide.exe with the illegal_access.c program that can be downloaded from

1VeriFast also supports Java. See VeriFast for Java: A Tutorial.
2There are a few known reasons (known as unsoundnesses) why the tool may sometimes incorrectly report “0 errors

found”; see soundness.md at https://github.com/verifast/verifast. There may also be unknown unsoundnesses.
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Figure 1: A screenshot of illegal_access.c in the VeriFast IDE

http://www.cs.kuleuven.be/~bartj/verifast/illegal_access.c

. The program will be shown in the VeriFast IDE. To verify the program, choose the Verify program
command in the Verify menu, press the Play toolbar button, or press F5. You will see something like
Fig 1. The program attempts to access the field balance of the struct instance myAccount allocated using
malloc. However, if there is insufficient memory, malloc returns zero and no memory is allocated. VeriFast
detects the illegal memory access that happens in this case. Notice the following GUI elements:

• The erroneous program element is displayed in a red color with a double underline.

• The error message states: “No matching heap chunks: account balance”. Indeed, in the scenario
where there is insufficient memory, the memory location (or heap chunk) that the program attempts
to access is not accessible to the program. account balance is the type of heap chunk that represents
the balance field of an instance of struct account.

• The assignment statement is shown on a yellow background. This is because the assignment state-
ment is the current step. VeriFast verifies each function by stepping through it, while keeping track
of a symbolic representation of the relevant program state. You can inspect the symbolic state at
each step by selecting the step in the Steps pane in the lower left corner of the VeriFast window. The
program element corresponding to the current step is shown on a yellow background. The symbolic
state consists of the path condition, shown in the Assumptions pane; the symbolic heap, shown in
the Heap chunks pane; and the symbolic store, shown in the Locals pane.

To correct the error, uncomment the commented statement. Now press F5 again. We get a green bar:
the program now verifies. This means VeriFast has symbolically executed all possible paths of execution
through function main, and found no errors.

Let’s take a closer look at how VeriFast symbolically executed this function. After VeriFast has
symbolically executed a program, you can view the symbolic execution tree for each function in the Trees
pane. The Trees pane is hidden by default, but you can reveal it by dragging the right-hand border of the
VeriFast window to the left. At the top of the Trees pane is a drop-down list of all functions that have
been symbolically executed. Select the Verifying function main item to view the symbolic execution tree
for function main.

A symbolic execution tree has three kinds of nodes:

• The top node represents the start of the symbolic execution. Click the top node: in the initial
symbolic execution state, there are no heap chunks (the Heap chunks pane is empty), there are no
local variables (the Locals pane is empty), and there are no assumptions (the Assumptions pane is
empty).
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• There is one fork node at each point where a symbolic execution path forks into two paths. This
happens when multiple cases need to be considered in the symbolic execution; it is therefore also
called a case split. The symbolic execution of function main involves one case split: symbolic execution
of a malloc call forks into one branch where no memory is available and therefore malloc returns a null
pointer, and another branch where memory is available and therefore malloc allocates the requested
amount of memory and returns a pointer to it. (A case split also happens when symbolically
executing the if statement, but since the two cases of the if statement coincide with the two cases
of the malloc statement, no separate fork node is shown.)

• There is one leaf node at the end of each complete symbolic execution path through the function.
Click any leaf node to see the full corresponding symbolic execution path in the Steps pane. Function
main has two symbolic execution paths: the path where no memory is available ends when the
program ends due to the call of abort; the path where memory is available ends when the function
returns.

Click the rightmost leaf node to view the execution path where malloc successfully allocates memory.
Notice that VeriFast shows arrows in the left margin next to the code of function main to indicate that
this path executes the second case of the malloc statement and the second case of the if statement.

To better understand the details of VeriFast’s symbolic execution, we will step through this path
from the top. Select the first step in the Steps pane. Then, press the Down arrow key. The Verifying
function main step does not affect the symbolic state. The Producing assertion step adds the assumption
true to the Assumptions. We will consider production and consumption of assertions in detail later in this
tutorial. We now arrive at the Executing statement step for the malloc statement. This statement affects
the symbolic state in three ways:

• It adds the heap chunks account balance(myAccount, value) and malloc block account(myAccount) to
the symbolic heap (as shown in the Heap chunks pane). Here, myAccount and value are symbols
that represent unknown values. Specifically, myAccount represents the memory address of the newly
allocated struct instance, and value represents the initial value of the balance field of the struct
instance. (In C, the initial values of the fields of a newly allocated struct instance are unspecified,
unlike in Java where the fields of a new object are initialized to the default value of their type.)

VeriFast freshly picks these symbols during this symbolic execution step. That is, to represent the
address of the new struct instance and the initial value of the balance field, VeriFast uses symbols
that are not yet being used on this symbolic execution path. To see this, try verifying the function
test shown below:

void test()
//@ requires true;
//@ ensures true;

{
{

struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }

}
{

struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }

}
}

Notice that to symbolically execute the first malloc statement, VeriFast picked symbols myAccount
and value, and to symbolically execute the second malloc statement, VeriFast picked symbols myAccount0
and value0.

• It adds the assumption myAccount 6= 0 (perhaps written differently) to the path condition (as shown
in the Assumptions pane). Indeed, if malloc succeeds, the returned pointer is not a null pointer.
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Symbols:
Assumptions:
Heap chunks:
Locals:

struct account *myAccount = malloc(sizeof(struct account));

Symbols: myAccount
Assumptions: myAccount = 0
Heap chunks:
Locals: myAccount 7→ myAccount

Figure 2: Symbolic execution of a malloc statement (first case)

Symbols:
Assumptions:
Heap chunks:
Locals:

struct account *myAccount = malloc(sizeof(struct account));

Symbols: myAccount, value
Assumptions: myAccount 6= 0
Heap chunks: account balance(myAccount, value), malloc block account(myAccount)
Locals: myAccount 7→ myAccount

Figure 3: Symbolic execution of a malloc statement (second case)

• It adds a binding to the symbolic store (shown in the Locals pane) that binds local variable myAccount
to symbolic value myAccount. Indeed, the program assigns the result of the malloc call (represented
by the symbol myAccount) to the local variable myAccount. Note that the fact that in this case the
local variable and the symbol have the same name is incidental and has no special significance.

Figure 3 summarizes the symbolic execution of malloc statements, in the successful case. Figure 2
summarizes the unsuccessful case.

The next step in the symbolic execution trace is the symbolic execution of the if statement. An if
statement is like a malloc statement in the sense that there are two cases to consider; therefore, for if
statements, too, VeriFast performs a case split and forks the symbolic execution path into two branches.
On the first branch, VeriFast considers the case where the condition of the if statement is true. It adds
the assumption that this is the case to the path condition and symbolically executes the then block of the
if statement. On the second branch, VeriFast considers the case where the condition of the if statement
is false. It adds the corresponding assumption to the path condition and symbolically executes the else
block, if any. Note that after adding an assumption to the path condition, VeriFast always checks if it can
detect an inconsistency in the resulting path condition; if so, the current symbolic execution path does
not correspond to any real execution path, so there is no point in continuing the symbolic execution of
this path and VeriFast abandons it. This is what happens with the first branch of the if statement after a
successful malloc; it is also what happens with the second branch of the if statement after an unsuccessful
malloc.

Figures 4 and 5 summarize the two cases of the symbolic execution of an if statement.
The next step of the symbolic execution path symbolically executes the statement that assigns value
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Symbols: myAccount
Assumptions:
Heap chunks:
Locals: myAccount 7→ myAccount

if (myAccount == 0)

Symbols: myAccount
Assumptions: myAccount = 0
Heap chunks:
Locals: myAccount 7→ myAccount

Figure 4: Symbolic execution of an if statement (first case). Symbolic execution continues with the then
block of the if statement.

Symbols: myAccount
Assumptions:
Heap chunks:
Locals: myAccount 7→ myAccount

if (myAccount == 0)

Symbols: myAccount
Assumptions: myAccount 6= 0
Heap chunks:
Locals: myAccount 7→ myAccount

Figure 5: Symbolic execution of an if statement (second case). Symbolic execution continues with the
else block of the if statement, if any.
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Symbols: myAccount, value
Assumptions:
Heap chunks: account balance(myAccount, value)
Locals: myAccount 7→ myAccount

myAccount->balance = 5;

Symbols: myAccount, value
Assumptions:
Heap chunks: account balance(myAccount, 5)
Locals: myAccount 7→ myAccount

Figure 6: Symbolic execution of a struct field assignment statement

Symbols: myAccount
Assumptions:
Heap chunks: account balance(myAccount, 5), malloc block account(myAccount)
Locals: myAccount 7→ myAccount

free(myAccount);

Symbols: myAccount
Assumptions:
Heap chunks:
Locals: myAccount 7→ myAccount

Figure 7: Symbolic execution of a free statement

5 to the balance field of the newly allocated struct instance. When symbolically executing an assignment
to a field of a struct instance, VeriFast first checks that a heap chunk for that field of that struct instance
is present in the symbolic heap. If not, it reports a “No such heap chunk” verification failure. It might
mean that the program is trying to access unallocated memory. If the chunk is present, VeriFast replaces
the second argument of the chunk with the value of the right-hand side of the assignment. This is shown
in Figure 6.

Finally, symbolic execution of the free statement checks that the two heap chunks that were added
by the malloc statement (the chunk for the balance field and the malloc block chunk) are still present in
the symbolic heap. If not, VeriFast reports a verification failure; the program might be trying to free a
struct instance that has already been freed. Otherwise, it removes the chunks, as shown in Figure 7. This
ensures that if a program frees a struct instance and then attempts to access that struct instance’s fields,
symbolic execution of the statements accessing the fields will fail (because the heap chunks for the fields
will be missing).

A program’s symbolic execution forest (consisting of one symbolic execution tree for each of the pro-
gram’s functions) constitutes a finite description of the program’s (usually infinite-depth and infinite-
width) concrete execution tree, consisting of the program’s concrete execution paths.

The concrete execution tree of the corrected version of the program of Figure 1 is shown in Figure 8.
Notice that it is in fact (practically) infinite-width. For this example program, the concrete execution tree
is not infinite-depth, because the program has no loops or recursion. If the program had a loop with an
unbounded number of iterations, the tree would have been infinite-depth as well.

Exercise 1 Draw the symbolic execution tree of the main function of the corrected version of the program
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Chunks:
Locals:

struct acc *a = malloc(sizeof(struct acc));

C: acc bal(1, 33), mb acc(1)
L: a 7→ 1

C: acc bal(2, 77), mb acc(2)
L: a 7→ 2

· · ·C:
L: a 7→ 0

if (a == 0)

C:
L: a 7→ 0

abort();

if (a == 0) { ... }

C: acc bal(1, 33), mb acc(1)
L: a 7→ 1

a->bal = 5;

C: acc bal(1, 5), mb acc(1)
L: a 7→ 1

free(a);

C:
L: a 7→ 1

return 0;

C:
L: result 7→ 0

if (a == 0) { ... }

C: acc bal(2, 77), mb acc(2)
L: a 7→ 2

a->bal = 5;

C: acc bal(2, 5), mb acc(2)
L: a 7→ 2

free(a);

C:
L: a 7→ 2

return 0;

C:
L: result 7→ 0

Figure 8: Concrete execution tree of the program of Figure 1 (after uncommenting the if statement). We
abbreviate Chunks as C, Locals as L, account as acc, balance as bal, myAccount as a, and malloc block
as mb. Note that the tree is not shown fully: the malloc node has one child node for each combination
(`, v) of an address ` for the new account and an initial value v of its balance field.
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of Figure 1. A symbolic execution tree differs from a concrete execution tree in that each state includes a
set of used symbols and a set of assumptions about these symbols, and in that the heap chunks and the local
variable bindings are expressed using these symbols. Furthermore, by using these symbols, a single path in
a symbolic execution tree can be used to describe infinitely many corresponding paths in the corresponding
concrete execution tree.

3 malloc block Chunks

To better understand why the malloc statement generates both an account balance chunk and a malloc -
block account chunk, change the program so that the struct instance is allocated as a local variable on the
stack instead of being allocated on the heap:

int main()
//@ requires true;
//@ ensures true;

{
struct account myAccountLocal;
struct account *myAccount = &myAccountLocal;
myAccount->balance = 5;
free(myAccount);
return 0;

}

This program first allocates an instance of struct account on the stack and calls it myAccountLocal. It then
assigns the address of this struct instance to pointer variable myAccount. The remainder of the program is
as before: the program initializes the balance field to value 5 and then attempts to free the struct instance.

If we ask VeriFast to verify this program, VeriFast reports the error

No matching heap chunks: malloc block account(myAccountLocal addr)

at the free statement. Indeed, the call of free is incorrect, since free may only be applied to a struct instance
allocated on the heap by malloc, not to a struct instance allocated on the stack as a local variable.

VeriFast detects this error as follows: 1) VeriFast generates a malloc block chunk only for struct
instances allocated using malloc, not for struct instances allocated on the stack. 2) When verifying a free
statement, VeriFast checks that a malloc block chunk exists for the struct instance being freed.

Notice that, in contrast, the account balance chunk is generated in both cases. As a result, the statement
that initializes the balance field verifies successfully, regardless of whether the struct instance was allocated
on the heap or on the stack.

4 Functions and Contracts

We continue to play with the example of the previous section. The example currently consists of only one
function: the main function. Let’s add another function. Write a function account set balance that takes
the address of an account struct instance and a integer amount, and assigns this amount to the struct
instance’s balance field. Then replace the field assignment in the main function with a call to this function.
We now have the following program:

#include "stdlib.h"

struct account {
int balance;

};

void account_set_balance(struct account *myAccount, int newBalance)
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{
myAccount->balance = newBalance;

}

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }
account_set_balance(myAccount, 5);
free(myAccount);
return 0;

}

If we try to verify the new program, VeriFast complains that the new function has no contract. Indeed,
VeriFast verifies each function separately, so it needs a precondition and a postcondition for each function
to describe the initial and final state of calls of the function.

Add the same contract that the main function has:

void account_set_balance(struct account *myAccount, int newBalance)
//@ requires true;
//@ ensures true;

Notice that contracts, like all VeriFast annotations, are in comments, so that the C compiler ignores them.
VeriFast also ignores comments, except the ones that are marked with an at (@) sign.

VeriFast now no longer complains about missing contracts. However, it now complains that the field
assignment in the body of account set balance cannot be verified because the symbolic heap does not
contain a heap chunk that grants permission to access this field. To fix this, we need to specify in the
function’s precondition that the function requires permission to access the balance field of the account
struct instance at address myAccount. We achieve this simply by mentioning the heap chunk in the
precondition:

void account_set_balance(struct account *myAccount, int newBalance)
//@ requires account_balance(myAccount, _);
//@ ensures true;

Notice that we use an underscore in the position where the value of the field belongs. This indicates that
we do not care about the old value of the field when the function is called.3

VeriFast now highlights the brace that closes the body of the function. This means we successfully
verified the field assignment. However, VeriFast now complains that the function leaks heap chunks. For
now, let’s simply work around this error message by inserting a leak command, which indicates that we’re
happy to leak this heap chunk. We will come back to this later.

void account_set_balance(struct account *myAccount, int newBalance)
//@ requires account_balance(myAccount, _);
//@ ensures true;

{
myAccount->balance = newBalance;
//@ leak account_balance(myAccount, _);

}

3VeriFast also supports a more concise syntax for field chunks. For example, account_balance(myAccount, _) can also be
written as myAccount->balance |-> _. In fact, the latter (field chunk-specific) syntax is generally recommended over the former
(generic chunk) syntax because it causes VeriFast to take into account the field chunk-specific information that there is at
most one chunk for a given field, and that the field’s value is within the limits of its type. However, for didactical reasons,
in this tutorial we initially use the generic chunk syntax so that the chunks written in the annotations and the heap chunks
shown in the VeriFast IDE look the same.
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Figure 9: When stepping through a function call, VeriFast shows both the call site (in green, in the lower
pane) and the callee’s contract (in yellow, in the upper pane).

Function account set balance now verifies, and VeriFast attempts to verify function main. It complains
that it cannot free the account struct instance because it does not have permission to access the balance
field. Indeed, the symbolic heap contains the malloc block account chunk but not the account balance
chunk. What happened to it? Let’s find out by stepping through the symbolic execution path. Select
the second step. The malloc statement is about to be executed and the symbolic heap is empty. Select
the next step. The malloc statement has added the account balance chunk and the malloc block account
chunk.

The if statement has no effect.
We then arrive at the call of account set balance. You will notice that this execution step has two

sub-steps, labeled “Consuming assertion” and “Producing assertion”. The verification of a function call
consists of consuming the function’s precondition and then producing the function’s postcondition. The
precondition and the postcondition are assertions, i.e., expressions that may include heap chunks in
addition to ordinary logic. Consuming the precondition means passing the heap chunks required by the
function to the function, thus removing them from the symbolic heap. Producing the postcondition means
receiving the heap chunks offered by the function when it returns, thus adding them to the symbolic heap.

Selecting the “Consuming assertion” step changes the layout of the VeriFast window (see Figure 9).
The source code pane is split into two parts. The upper part is used to display the contract of the function
being called, while the lower part is used to display the function being verified. (Since in this example the
function being called is so close to the function being verified, it is likely to be shown in the lower part as
well.) The call being verified is shown on a green background. The part of the contract being consumed
or produced is shown on a yellow background. If you move from the “Consuming assertion” step to the
“Producing assertion” step, you notice that the “Consuming assertion” step removes the account balance
chunk from the symbolic heap. Conceptually, it is now in use by the account set balance function while
the main function waits for this function to return. Since function account set balance’s postcondition
does not mention any heap chunks, the “Producing assertion” step does not add anything to the symbolic
heap.

It is now clear why VeriFast complained that account set balance leaked heap chunks: since the function
did not return the account balance chunk to its caller, the chunk was lost and the field could never be
accessed again. VeriFast considers this an error since it is usually not the intention of the programmer;
furthermore, if too many memory locations are leaked, the program will run out of memory.

It is now also clear how to fix the error: we must specify in the postcondition of function account set balance

12



that the function must hand back the account balance chunk to its caller.

void account_set_balance(struct account *myAccount, int newBalance)
//@ requires account_balance(myAccount, _);
//@ ensures account_balance(myAccount, newBalance);

{
myAccount->balance = newBalance;

}

This eliminates the leak error message and the error at the free statement. The program now verifies.
Notice that we refer to the newBalance parameter in the position where the value of the field belongs; this
means that the value of the field when the function returns must be equal to the value of the parameter.

Exercise 2 Now factor out the creation and the disposal of the account struct instance into separate
functions as well. The creation function should initialize the balance to zero. Note: if you need to mention
multiple heap chunks in an assertion, separate them using the separating conjunction &*& (ampersand-
star-ampersand). Also, you can refer to a function’s return value in its postcondition by the name result.

5 Patterns

Now, let’s add a function that returns the current balance, and let’s test it in the main function. Here’s
our first attempt:

int account_get_balance(struct account *myAccount)
//@ requires account_balance(myAccount, _);
//@ ensures account_balance(myAccount, _);

{
return myAccount->balance;

}

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = create_account();
account_set_balance(myAccount, 5);
int b = account_get_balance(myAccount);
assert(b == 5);
account_dispose(myAccount);
return 0;

}

The new function verifies successfully, but VeriFast complains that it cannot prove the condition
b == 5. When VeriFast is asked to check a condition, it first translates the condition to a logical formula,
by replacing each variable by its symbolic value. We can see in the symbolic store, displayed in the Locals
pane, that the symbolic value of variable b is the logical symbol b. Therefore, the resulting logical formula
is b == 5. VeriFast then attempts to derive this formula from the path condition, i.e., the formulae shown
in the Assumptions pane. Since the only assumption in this case is true, VeriFast cannot prove the
condition.

The problem is that the postcondition of function account get balance does not specify the function’s
return value. It does not state that the return value is equal to the value of the balance field when the
function is called. To fix this, we need to be able to assign a name to the value of the balance field
when the function is called. We can do so by replacing the underscore in the precondition by the pattern
?theBalance. This causes the name theBalance to be bound to the value of the balance field. We can then
use this name in the postcondition to specify the return value using an equality condition. A function’s
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return value is available in the function’s postcondition under the name result. Logical conditions and
heap chunks in an assertion must be separated using the separating conjunction &*&.

int account_get_balance(struct account *myAccount)
//@ requires account_balance(myAccount, ?theBalance);
//@ ensures account_balance(myAccount, theBalance) &*& result == theBalance;

{
return myAccount->balance;

}

Notice that we use the theBalance name also to specify that the function does not modify the value of the
balance field, by using the name again in the field value position in the postcondition.

The program now verifies. Indeed, if we use the Run to cursor command to run to the assert
statement, we see that the assumption (= b 5) has appeared in the Assumptions pane. If we step up,
we see that it was added when the equality condition in function account get balance’s postcondition was
produced. If we step up further, we see that the variable theBalance was added to the upper Locals pane
when the field chunk assertion was consumed, and bound to value 5. It was bound to value 5 because
that was the value found in the symbolic heap. When verifying a function call, the upper Locals pane
is used to evaluate the contract of the function being called. It initially contains the bindings of the
function’s parameters to the arguments specified in the call; additional bindings appear as patterns are
encountered in the contract. The assumption (= b 5) is the logical formula obtained by evaluating the
equality condition result == theBalance under the symbolic store shown in the upper Locals pane.

Exercise 3 Add a function that deposits a given amount into an account. Verify the following main
function.

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = create_account();
account_set_balance(myAccount, 5);
account_deposit(myAccount, 10);
int b = account_get_balance(myAccount);
assert(b == 15);
account_dispose(myAccount);
return 0;

}

Note: VeriFast checks for arithmetic overflow. For now, disable this check in the Verify menu.

Exercise 4 Add a field limit to struct account that specifies the minimum balance of the account. (It is
typically either zero or a negative number.) The limit is specified at creation time. Further add a function to
withdraw a given amount from an account. The function must respect the limit; if withdrawing the requested
amount would violate the limit, then the largest amount that can be withdrawn without violating the limit
is withdrawn. The function returns the amount actually withdrawn as its return value. You will need
to use C’s conditional expressions condition ? value1 : value2. Remove function account_set_balance.
Use the shorthand notation for field chunks: myAccount->balance |-> value. Verify the following main
function.

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = create_account(-100);
account_deposit(myAccount, 200);
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int w1 = account_withdraw(myAccount, 50);
assert(w1 == 50);
int b1 = account_get_balance(myAccount);
assert(b1 == 150);
int w2 = account_withdraw(myAccount, 300);
assert(w2 == 250);
int b2 = account_get_balance(myAccount);
assert(b2 == -100);
account_dispose(myAccount);
return 0;

}

6 Predicates

We continue with the program obtained in Exercise 4. We observe that the contracts are becoming rather
long. Furthermore, if we consider the account “class” and the main function to be in different modules,
then the internal implementation details of the account module are exposed to the main function. We
can achieve more concise contracts as well as information hiding by introducing a predicate to describe an
account struct instance in the function contracts.

/*@
predicate account_pred(struct account *myAccount, int theLimit, int theBalance) =

myAccount->limit |-> theLimit &*& myAccount->balance |-> theBalance
&*& malloc_block_account(myAccount);

@*/

A predicate is a named, parameterized assertion. Furthermore, it introduces a new type of heap chunk.
An account_pred heap chunk bundles an account_limit heap chunk, an account_balance heap chunk, and
a malloc_block_account heap chunk into one.

Let’s use this predicate to rewrite the contract of the deposit function. Here’s a first attempt:

void account_deposit(struct account *myAccount, int amount)
//@ requires account_pred(myAccount, ?limit, ?balance) &*& 0 <= amount;
//@ ensures account_pred(myAccount, limit, balance + amount);

{
myAccount->balance += amount;

}

This function does not verify. The update of the balance field cannot be verified since there is no
account_balance heap chunk in the symbolic heap. There is only a account_pred heap chunk. The
account_pred heap chunk encapsulates the account_balance heap chunk, but VeriFast does not“un-bundle”
the account_pred predicate automatically. We must instruct VeriFast to un-bundle predicate heap chunks
by inserting an open ghost statement:

void account_deposit(struct account *myAccount, int amount)
//@ requires account_pred(myAccount, ?limit, ?balance) &*& 0 <= amount;
//@ ensures account_pred(myAccount, limit, balance + amount);

{
//@ open account_pred(myAccount, limit, balance);
myAccount->balance += amount;

}

The assignment now verifies, but now VeriFast is stuck at the postcondition. It complains that it can-
not find the account_pred heap chunk that it is supposed to hand back to the function’s caller. The
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account_pred chunk’s constituent chunks are present in the symbolic heap, but VeriFast does not auto-
matically bundle them up into an account_pred chunk. We must instruct VeriFast to do so using a close
ghost statement:

void account_deposit(struct account *myAccount, int amount)
//@ requires account_pred(myAccount, ?limit, ?balance) &*& 0 <= amount;
//@ ensures account_pred(myAccount, limit, balance + amount);

{
//@ open account_pred(myAccount, limit, balance);
myAccount->balance += amount;
//@ close account_pred(myAccount, limit, balance + amount);

}

The function now verifies. However, the main function does not, since the call of account_deposit expects
an account_pred heap chunk.

Exercise 5 Rewrite the remaining contracts using the account_pred predicate. Insert open and close
statements as necessary.

7 Recursive Predicates

In the previous section, we introduced predicates for the sake of conciseness and information hiding.
However, there is an even more compelling need for predicates: they are the only way you can describe
unbounded-size data structures in VeriFast. Indeed, in the absence of predicates, the number of memory
locations described by an assertion is linear in the length of the assertion. This limitation can be overcome
through the use of recursive predicates, i.e., predicates that invoke themselves.

Exercise 6 Implement a stack of integers using a singly linked list data structure: implement functions
create_stack, stack_push, stack_pop, and stack_dispose. In order to be able to specify the precondition
of stack_pop, your predicate will need to have a parameter that specifies the number of elements in the
stack. Function stack_dispose may be called only on an empty stack. Do not attempt to specify the
contents of the stack; this is not possible with the annotation elements we have seen. You will need to use
conditional assertions: condition ? assertion1 : assertion2. Note: VeriFast does not allow the use of
field dereferences in open statements. If you want to use the value of a field in an open statement, you
must first store the value in a local variable. Verify the following main function:

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_pop(s);
stack_pop(s);
stack_dispose(s);
return 0;

}

Now, let’s extend the solution to Exercise 6 on page 73 with a stack_is_empty function. Recall the
predicate definitions:

predicate nodes(struct node *node, int count) =
node == 0 ?

count == 0
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:
0 < count
&*& node->next |-> ?next &*& node->value |-> ?value
&*& malloc_block_node(node) &*& nodes(next, count - 1);

predicate stack(struct stack *stack, int count) =
stack->head |-> ?head &*& malloc_block_stack(stack) &*& 0 <= count &*& nodes(head, count);

Here’s a first stab at a stack_is_empty function:

bool stack_is_empty(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == (count == 0);

{
//@ open stack(stack, count);
bool result = stack->head == 0;
//@ close stack(stack, count);
return result;

}

The function does not verify. VeriFast complains that it cannot prove the condition result == (count == 0)
in the postcondition. Indeed, if we look at the assumptions in the Assumptions pane, they are insufficient
to prove this condition. The problem is that the relationship between the value of the head pointer and
the number of nodes is hidden inside the nodes predicate. We need to open the predicate, so that the
information is added to the assumptions. Of course, we then need to close it again so that we can close
the stack predicate.

bool stack_is_empty(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == (count == 0);

{
//@ open stack(stack, count);
struct node *head = stack->head;
//@ open nodes(head, count);
bool result = stack->head == 0;
//@ close nodes(head, count);
//@ close stack(stack, count);
return result;

}

The function now verifies. What happens exactly is the following. When VeriFast executes the open
statement, it produces the conditional assertion in the body of the nodes predicate. This causes it to
perform a case split. This means that the rest of the function is verified twice: once under the assumption
that the condition is true, and once under the assumption that the condition is false. In other words, the
execution path splits into two execution paths, or two branches. On both branches, the postcondition can
now be proved easily: on the first branch, we get the assumptions head == 0 and count == 0, and on the
second branch we get head != 0 and 0 < count.

Exercise 7 Modify function stack_dispose so that it works even if the stack still contains some elements.
Use a recursive helper function.4

Notice that VeriFast performs a case split when verifying an if statement.

Exercise 8 Add a function stack_get_sum that returns the sum of the values of the elements on the stack.
Use a recursive helper function. The contract need not specify the return value (since we did not see how
to do that yet).

4Warning: VeriFast does not verify termination; it does not complain about infinite recursion or infinite loops. That is
still your own responsibility.
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8 Loops

In Exercise 7, we implemented stack_dispose using a recursive function. However, this is not an optimal
implementation. If our data structure contains very many elements, we may create too many activation
records and overflow the call stack. It is more optimal to implement the function using a loop. Here’s a
first attempt:

void stack_dispose(struct stack *stack)
//@ requires stack(stack, _);
//@ ensures true;

{
//@ open stack(stack, _);
struct node *n = stack->head;
while (n != 0)
{

//@ open nodes(n, _);
struct node *next = n->next;
free(n);
n = next;

}
//@ open nodes(0, _);
free(stack);

}

This function does not verify. VeriFast complains at the loop because the loop does not specify a loop
invariant. VeriFast needs a loop invariant so that it can verify an arbitrary sequence of loop iterations by
verifying the loop body once, starting from a symbolic state that represents the start of an arbitrary loop
iteration (not just the first iteration).

Specifically, VeriFast verifies a loop as follows:

• First, it consumes the loop invariant.

• Then, it removes the remaining heap chunks from the heap (but it remembers them).

• Then, it assigns a fresh logical symbol to each local variable that is modified in the loop body.

• Then, it produces the loop invariant.

• Then, it performs a case split on the loop condition:

– If the condition is true:

∗ It verifies the loop body,

∗ then it consumes the loop invariant,

∗ and then finally it checks for leaks. After this step this execution path is finished.

– If the condition is false, VeriFast puts the heap chunks that were removed in Step 2 back into
the heap, and then verification continues after the loop.

Notice that this means that the loop can access only those heap chunks that are mentioned in the loop
invariant.

The correct loop invariant for the above function is as follows:

void stack_dispose(struct stack *stack)
//@ requires stack(stack, _);
//@ ensures true;

{
//@ open stack(stack, _);
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struct node *n = stack->head;
while (n != 0)

//@ invariant nodes(n, _);
{

//@ open nodes(n, _);
struct node *next = n->next;
free(n);
n = next;

}
//@ open nodes(0, _);
free(stack);

}

You can inspect the first branch of the execution of the loop by placing the cursor at the closing brace
of the loop body and choosing the Run to cursor command. Find the Executing statement step for
the while statement. Notice that this step is followed by a Producing assertion step and a Consuming
assertion step. Notice that between these two steps, the value of variable n changes from head to n, and
all chunks are removed from the symbolic heap. Further notice that in the next step, the assumption
(not (= n 0)) is added to the Assumptions pane.

You can inspect the second branch of the execution of the loop by placing the cursor at the closing
brace of the function body and choosing the Run to cursor command. Notice that the same things
happen as in the first branch, except that the loop body is not executed, and the assumption (= n 0) is
added to the Assumptions pane.

Exercise 9 Specify and implement function stack_popn, which pops a given number of elements from
the stack (and returns void). You may call stack_pop internally. Use a while loop. Notice that your
loop invariant must not only enable verification of the loop body, but must also maintain the relationship
between the current state and the initial state, sufficiently to prove the postcondition. This often means
that you should not overwrite the function parameter values, since you typically need the original values
in the loop invariant.

9 Inductive Datatypes

Let’s return to our initial annotated stack implementation (the solution to Exercise 6). The annotations do
not specify full functional correctness. In particular, the contract of function stack_pop does not specify
the function’s return value. As a result, using these annotations, we cannot verify the following main
function:

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
int result1 = stack_pop(s);
assert(result1 == 20);
int result2 = stack_pop(s);
assert(result2 == 10);
stack_dispose(s);
return 0;

}
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In order to verify this main function, instead of tracking just the number of elements in the stack, we
need to track the values of the elements as well. In other words, we need to track the precise sequence
of elements currently stored by the stack. We can represent a sequence of integers using an inductive
datatype ints:

inductive ints = ints_nil | ints_cons(int, ints);

This declaration declares a type ints with two constructors ints_nil and ints_cons. ints_nil represents
the empty sequence. ints_cons constructs a nonempty sequence given the head (the first element) and
the tail (the remaining elements). For example, the sequence 1,2,3 can be written as

ints_cons(1, ints_cons(2, ints_cons(3, ints_nil)))

Exercise 10 Replace the count parameter of the nodes and stack predicates with a values parameter of
type ints and update the predicate bodies. Further update the functions create_stack, stack_push, and
stack_dispose. Don’t worry about stack_pop for now.

10 Fixpoint Functions

How should we update the annotations for function stack_pop? We need to refer to the tail of the current
sequence in the postcondition and in the close statement. Furthermore, in order to specify the return
value, we need to refer to the head of the current sequence. We can do so using fixpoint functions:

fixpoint int ints_head(ints values) {
switch (values) {

case ints_nil: return 0;
case ints_cons(value, values0): return value;

}
}

fixpoint ints ints_tail(ints values) {
switch (values) {

case ints_nil: return ints_nil;
case ints_cons(value, values0): return values0;

}
}

Notice that we can use switch statements on inductive datatypes. There must be exactly one case for each
constructor. In a case for a constructor that takes parameters, the specified parameter names are bound
to the corresponding constructor argument values that were used when the value was constructed. The
body of a fixpoint function must be a switch statement on one of the function’s parameters (called the
inductive parameter). Furthermore, the body of each case must be a return statement.

In contrast to regular C functions, a fixpoint function may be used in any place where an expression
is expected in an annotation. This means we can use the ints_head and ints_tail functions to adapt
function stack_pop to the new predicate definitions, and to specify the return value.

Exercise 11 Do so.

We have now specified full functional correctness of our stack implementation, and VeriFast can now
verify the new main function.

Exercise 12 Add a C function stack_get_sum that returns the sum of the elements of a given stack.
Implement it using a recursive helper function nodes_get_sum. Specify the new C functions using a recursive
fixpoint function ints_sum. Remember to turn off arithmetic overflow checking in the Verify menu. Verify
the following main function:

20



int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
int sum = stack_get_sum(s);
assert(sum == 30);
int result1 = stack_pop(s);
assert(result1 == 20);
int result2 = stack_pop(s);
assert(result2 == 10);
stack_dispose(s);
return 0;

}

VeriFast supports recursive fixpoint functions. It enforces that they always terminate by allowing
only direct recursion and by requiring that the value of the inductive parameter of a recursive call is a
constructor argument of the value of the inductive parameter of the caller.

11 Lemmas

Note: Sections 25 to 29 offer an alternative introduction to recursive predicates. If you are not yet
comfortable with recursive predicates, refer to these sections before starting the present section.

Let’s return to our initial annotated stack implementation (the solution to Exercise 6). Let’s add a
stack_get_count function that returns the number of elements in the stack, implemented using a loop:

int stack_get_count(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == count;

{
//@ open stack(stack, count);
struct node *head = stack->head;
struct node *n = head;
int i = 0;
while (n != 0)

//@ invariant true;
{

n = n->next;
i++;

}
//@ close stack(stack, count);
return i;

}

Clearly, the loop invariant true will not do. What should it be? We need to express that n is somewhere
inside our sequence of nodes. One way to do this is by working with linked list segments (or list segments
for short). We state in the loop invariant that there is a list segment from head to n and a separate list
segment from n to 0:

//@ invariant lseg(head, n, i) &*& lseg(n, 0, count - i);

We can define the lseg predicate as follows:
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predicate lseg(struct node *first, struct node *last, int count) =
first == last ?

count == 0
:

0 < count &*& first != 0 &*&
first->value |-> _ &*& first->next |-> ?next &*& malloc_block_node(first) &*&
lseg(next, last, count - 1);

We are not done yet. We need to establish the loop invariant when first entering the loop. That is, we
need to establish

lseg(head, head, 0) &*& lseg(head, 0, count)

The first conjunct is easy: it is empty, so we can just close it. The second conjunct requires that we rewrite
the nodes(head, count) chunk into an equivalent lseg(head, 0, count) chunk. Notice that we cannot do
so using a statically bounded number of open and close operations. We need to use either a loop or a
recursive function. Since VeriFast does not allow loops inside annotations, we will use a recursive function.
We will not use a regular C function, since the function has no purpose at run time; furthermore, we cannot
use a fixpoint function, since the latter cannot include open or close statements. VeriFast supports a third
kind of function, called lemma functions. They are just like regular C functions, except that they may
not perform field assignments or call regular functions, and they must always terminate. It follows that
calling them has no effect at run time. Their only purpose is to transform some heap chunks into an
equivalent set of heap chunks, i.e. different heap chunks that represent the same actual memory values.
In contrast with fixpoint functions, they may be called only through separate call statements, not from
within expressions.

VeriFast checks termination of a lemma function by allowing only direct recursion and by checking
each recursive call as follows: first, if, after consuming the precondition of the recursive call, a field chunk
is left in the symbolic heap, then the call is allowed. This is induction on heap size. Otherwise, if the
body of the lemma function is a switch statement on a parameter whose type is an inductive datatype,
then the argument for this parameter in the recursive call must be a constructor argument of the caller’s
argument for the same parameter. This is induction on an inductive parameter. Finally, if the body of the
lemma function is not such a switch statement, then the first heap chunk consumed by the precondition
of the callee must have been obtained from the first heap chunk consumed by the precondition of the
caller through one or more open operations. This is induction on the derivation of the first conjunct of
the precondition.

We can transform a nodes chunk into an lseg chunk using the following lemma function:

lemma void nodes_to_lseg_lemma(struct node *first)
requires nodes(first, ?count);
ensures lseg(first, 0, count);

{
open nodes(first, count);
if (first != 0) {

nodes_to_lseg_lemma(first->next);
}
close lseg(first, 0, count);

}

Notice that this lemma is admitted since it performs induction on heap size.

Exercise 13 We will need the inverse operation as well. Write a lemma function lseg_to_nodes_lemma
that takes an lseg chunk that ends in 0 and transforms it into a nodes chunk.

The stack_get_count function now looks as follows:

int stack_get_count(struct stack *stack)
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//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == count;

{
//@ open stack(stack, count);
struct node *head = stack->head;
//@ nodes_to_lseg_lemma(head);
struct node *n = head;
int i = 0;
//@ close lseg(head, head, 0);
while (n != 0)

//@ invariant lseg(head, n, i) &*& lseg(n, 0, count - i);
{

//@ open lseg(n, 0, count - i);
n = n->next;
i++;
// Error!

}
//@ open lseg(0, 0, _);
//@ lseg_to_nodes_lemma(head);
//@ close stack(stack, count);
return i;

}

We are almost done. All that is left to do is to fix the error that we get at the end of the loop body. At
that point, we have the following chunks:

lseg(head, ?old_n, i - 1) &*& old_n->value |-> _ &*& old_n->next |-> n &*&
malloc_block_node(old_n) &*& lseg(n, 0, count - i)

We need to transform these into the following:

lseg(head, n, i) &*& lseg(n, 0, count - i)

That is, we need to append the node at the old value of n to the end of the list segment that starts at
head. We will again need to use a lemma function for this. Here’s a first attempt:

lemma void lseg_add_lemma(struct node *first)
requires

lseg(first, ?last, ?count) &*& last != 0 &*& last->value |-> _ &*& last->next |-> ?next &*&
malloc_block_node(last);

ensures lseg(first, next, count + 1);
{

open lseg(first, last, count);
if (first == last) {

close lseg(next, next, 0);
} else {

lseg_add_lemma(first->next);
}
close lseg(first, next, count + 1);

}

VeriFast complains while trying to perform the final close operation, on the path where first equals last.
It has assumed that first equals next and it cannot prove that count + 1 equals zero. In our scenario,
first never equals next, since first always points to a node of the stack, and next either points to a
separate node or equals 0. However, the precondition of our lemma function does not express this. In
order to include this information, we need to require the list segment from next to 0 as well. By opening
and closing this list segment before we perform the final close operation, we obtain the information that
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first and next are distinct. Specifically, whenever VeriFast produces a field chunk, and another field
chunk for the same field is already in the symbolic heap, it adds an assumption stating that the field
chunks belong to distinct struct instances.

We obtain the following lseg_add_lemma and stack_get_count functions:

/*@
lemma void lseg_add_lemma(struct node *first)

requires
lseg(first, ?last, ?count) &*& last != 0 &*& last->value |-> _ &*& last->next |-> ?next &*&
malloc_block_node(last) &*& lseg(next, 0, ?count0);

ensures lseg(first, next, count + 1) &*& lseg(next, 0, count0);
{

open lseg(first, last, count);
if (first == last) {

close lseg(next, next, 0);
} else {

lseg_add_lemma(first->next);
}
open lseg(next, 0, count0);
close lseg(next, 0, count0);
close lseg(first, next, count + 1);

}
@*/

int stack_get_count(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == count;

{
//@ open stack(stack, count);
struct node *head = stack->head;
//@ nodes_to_lseg_lemma(head);
struct node *n = head;
int i = 0;
//@ close lseg(head, head, 0);
while (n != 0)

//@ invariant lseg(head, n, i) &*& lseg(n, 0, count - i);
{

//@ open lseg(n, 0, count - i);
n = n->next;
i++;
//@ lseg_add_lemma(head);

}
//@ open lseg(0, 0, _);
//@ lseg_to_nodes_lemma(head);
//@ close stack(stack, count);
return i;

}

These now verify.

Exercise 14 Verify the following function. You’ll need an extra lemma.

void stack_push_all(struct stack *stack, struct stack *other)
//@ requires stack(stack, ?count) &*& stack(other, ?count0);
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//@ ensures stack(stack, count0 + count);
{

struct node *head0 = other->head;
free(other);
struct node *n = head0;
if (n != 0) {

while (n->next != 0)
{

n = n->next;
}
n->next = stack->head;
stack->head = head0;

}
}

Exercise 15 Implement, specify, and verify a function stack_reverse that performs in-place reversal of a
stack, i.e., without any memory allocation. Verify full functional correctness (see Section 9). You’ll need
to define additional fixpoints and lemmas.

12 Function Pointers

Let’s write a function that takes a stack and removes those elements that do not satisfy a given predicate:

typedef bool int_predicate(int x);

struct node *nodes_filter(struct node *n, int_predicate *p)
//@ requires nodes(n, _);
//@ ensures nodes(result, _);

{
if (n == 0) {

return 0;
} else {

//@ open nodes(n, _);
bool keep = p(n->value);
if (keep) {

struct node *next = nodes_filter(n->next, p);
//@ open nodes(next, ?count);
//@ close nodes(next, count);
n->next = next;
//@ close nodes(n, count + 1);
return n;

} else {
struct node *next = n->next;
free(n);
struct node *result = nodes_filter(next, p);
return result;

}
}

}

void stack_filter(struct stack *stack, int_predicate *p)
//@ requires stack(stack, _);
//@ ensures stack(stack, _);
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{
//@ open stack(stack, _);
struct node *head = nodes_filter(stack->head, p);
//@ assert nodes(head, ?count);
stack->head = head;
//@ open nodes(head, count);
//@ close nodes(head, count);
//@ close stack(stack, count);

}

bool neq_20(int x)
//@ requires true;
//@ ensures true;

{
return x != 20;

}

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_push(s, 30);
stack_filter(s, neq_20);
stack_dispose(s);
return 0;

}

This program does not verify. VeriFast does not know what contract to use to verify the call of p in
function nodes_filter. VeriFast requires that each function type has a contract:

typedef bool int_predicate(int x);
//@ requires true;
//@ ensures true;

However, this is not sufficient. Even though p is of type int_predicate *, this does not guarantee that it
points to a function that complies with the int_predicate function type’s signature and contract. Indeed,
any integer can be cast to a pointer and any pointer can be cast to a function pointer. Therefore, VeriFast
introduces a pure boolean function is_T for each function type T declared in the program. When verifying
a call through a function pointer p of type T *, VeriFast checks that is_T(p) is true. In order to generate
an is_T(f) fact for a given function f, f’s header must include a function type implementation clause:

bool neq_20(int x) //@ : int_predicate
//@ requires true;
//@ ensures true;

This further causes VeriFast to check that the contract of neq_20 subsumes the contract of int_predicate.
Finally, we must pass the is_int_predicate fact from the client to the call site:

struct node *nodes_filter(struct node *n, int_predicate *p)
//@ requires nodes(n, _) &*& is_int_predicate(p) == true;
//@ ensures nodes(result, _);

void stack_filter(struct stack *stack, int_predicate *p)
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//@ requires stack(stack, _) &*& is_int_predicate(p) == true;
//@ ensures stack(stack, _);

Notice that we write is_int_predicate(p) == true instead of is_int_predicate(p). VeriFast parses the
latter form as a predicate assertion, and since there is no such predicate, rejects it.

Exercise 16 Put all the pieces together.

The state of our stack_filter function is unsatisfactory in two ways: firstly, the int_predicate function
cannot read any memory locations, since its precondition does not require any heap chunks; it follows that
you cannot filter all elements that are greater than some user-provided value, for example. This will be
solved using predicate families in Section 15. Secondly, the implementation re-assigns each next pointer,
even if only a few elements are removed. This will be solved using by-reference parameters in Section 13.

13 By-Reference Parameters

Here’s an alternative implementation of the stack_filter function from Section 12. Instead of re-assigning
each next pointer, it passes a pointer to the next pointer and only re-assigns it when it changes.

void nodes_filter(struct node **n, int_predicate *p) {
if (*n != 0) {

bool keep = p((*n)->value);
if (keep) {

nodes_filter(&(*n)->next, p);
} else {

struct node *next = (*n)->next;
free(*n);

*n = next;
nodes_filter(n, p);

}
}

}

void stack_filter(struct stack *stack, int_predicate *p) {
nodes_filter(&stack->head, p);

}

In this program, we are effectively passing the pointer to the current node to function nodes_filter by
reference. Inside function nodes_filter, we dereference n to obtain the pointer to the current node.
VeriFast treats pointer dereferences in a way similar to field dereferences. However, instead of looking in
the symbolic heap for a field chunk, it looks for a generic variable chunk; in this case, since the pointer
being dereferenced points to a variable that holds a pointer, it looks for a pointer chunk. Predicate
pointer is defined in prelude.h as follows:

predicate pointer(void **pp; void *p);

(We will discuss the meaning of the semicolon later; for now, just read it like a comma.) Like in the case
of a field chunk, the first argument is the address of the variable, and the second argument is the current
value of the variable.

It follows that the following is a valid contract for function nodes_filter:

void nodes_filter(struct node **n, int_predicate *p)
//@ requires pointer(n, ?node) &*& nodes(node, _) &*& is_int_predicate(p) == true;
//@ ensures pointer(n, ?node0) &*& nodes(node0, _);
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In order to be able to call nodes_filter from stack_filter, we must produce a pointer chunk. Spe-
cifically, we must transform the stack_head chunk into a pointer chunk. We do this simply by opening
the stack_head chunk. To turn the pointer chunk back into a stack_head chunk, we simply close the
stack_head chunk again:

void stack_filter(struct stack *stack, int_predicate *p)
//@ requires stack(stack, _) &*& is_int_predicate(p) == true;
//@ ensures stack(stack, _);

{
//@ open stack(stack, _);
//@ open stack_head(stack, _);
nodes_filter(&stack->head, p);
//@ assert pointer(&stack->head, ?head) &*& nodes(head, ?count);
//@ close stack_head(stack, head);
//@ open nodes(head, count);
//@ close nodes(head, count);
//@ close stack(stack, count);

}

Notice that, since we cannot use patterns in close statements, we need to bind the value of the head field
to a variable head before we can close the stack_head chunk.

Exercise 17 Verify function nodes_filter.

Note: VeriFast currently supports the dereference (*) operator only for pointers to pointers, pointers
to integers, and pointers to characters. In the latter cases, the following predicates are used, also defined
in prelude.h:

predicate integer(int *p; int v);
predicate character(char *p; char v);

VeriFast does not yet support taking the address of a local variable.

14 Arithmetic Overflow

Consider the following program:

int main()
//@ requires true;
//@ ensures true;

{
int x = 2000000000 + 2000000000;
assert(0 <= x);
return 0;

}

The behavior of this program is not uniquely defined by the C language. Specifically, the int type supports
only a finite range of integers, and furthermore the C language does not specify the bounds of this range.
The bounds are implementation-dependent. The C language does specify that the least and greatest value
of type int are given by the macros INT_MIN and INT_MAX, respectively, and that INT_MIN is not greater
than -32767 and that INT_MAX is not less than 32767. Furthermore, the C language does not specify what
happens if an arithmetic operation on type int yields a value that is not within the limits of type int.

VeriFast does not attempt to be sound with respect to arbitrary C implementations (or even with
respect to arbitrary standard-compliant ones). Specifically, it assumes that INT_MIN equals −231 and
INT_MAX equals 231 − 1.
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When symbolically evaluating an arithmetic operation in C code (i.e., not in an annotation), VeriFast
checks that the result of the operation fits within the bounds of the result type, unless arithmetic overflow
checking has been turned off in the Verify menu. As a result, VeriFast rejects the above program. It also
rejects the following program:

void int_add(int *x, int *y)
//@ requires integer(x, ?vx) &*& integer(y, ?vy);
//@ ensures integer(x, vx+vy) &*& integer(y, vy);

{
int x_deref = *x;
int y_deref = *y;

*x = x_deref + y_deref;
}

Let’s try to fix this function so that it works correctly on a 32-bit machine. Here’s a first attempt:

#include "stdlib.h"
void int_add(int *x_ptr, int *y_ptr)

//@ requires integer(x_ptr, ?x_value) &*& integer(y_ptr, ?y_value);
//@ ensures integer(x_ptr, x_value+y_value) &*& integer(y_ptr, y_value);

{
int x = *x_ptr;
int y = *y_ptr;
if (0 <= x) {

if (INT_MAX - x < y) abort();
} else {

if (y < INT_MIN - x) abort();
}

*x_ptr = x + y;
}

Even though this function works correctly on a 32-bit machine, VeriFast does not accept it. This is because
VeriFast checks that the results of the arithmetic operations are within the bounds of the type, but it
does not assume that the original values are within the bounds of the type. These assumptions are not
generated automatically for verification performance reasons. In order to generate these assumptions, we
must insert produce_limits ghost commands into the code. The argument of a produce_limits command
must be the name of a C local variable (i.e., not a local variable declared in an annotation). The following
program verifies.

#include "stdlib.h"
void int_add(int *x_ptr, int *y_ptr)

//@ requires integer(x_ptr, ?x_value) &*& integer(y_ptr, ?y_value);
//@ ensures integer(x_ptr, x_value+y_value) &*& integer(y_ptr, y_value);

{
int x = *x_ptr;
int y = *y_ptr;
//@ produce_limits(x);
//@ produce_limits(y);
if (0 <= x) {

if (INT_MAX - x < y) abort();
} else {

if (y < INT_MIN - x) abort();
}

*x_ptr = x + y;
}
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Note: The above overflow-checked integer addition implementation is probably not the most optimal
one in terms of performance. For example, the x86 instruction set includes the INTO (Interrupt on
Overflow) instruction, which causes a software interrupt if the overflow flag is set. An implementation
that uses this instruction is likely to perform much better.

Note: in case an integer, character or pointer chunk is on the heap, one can also use the lemmas
integer_limits, character_limits and pointer_limits respectively. The contracts of these lemmas can
be read in the file prelude.h.

15 Predicate Families

Let’s go back to the stack_filter function from Section 12. Suppose we want to remove all occurrences
of some user-provided value from the stack:

typedef bool int_predicate(void *data, int x);

struct node *nodes_filter(struct node *n, int_predicate *p, void *data)
{

if (n == 0) {
return 0;

} else {
bool keep = p(data, n->value);
if (keep) {

struct node *next = nodes_filter(n->next, p, data);
n->next = next;
return n;

} else {
struct node *next = n->next;
free(n);
struct node *result = nodes_filter(next, p, data);
return result;

}
}

}

void stack_filter(struct stack *stack, int_predicate *p, void *data)
{

struct node *head = nodes_filter(stack->head, p, data);
stack->head = head;

}

struct neq_a_data {
int a;

};

bool neq_a(struct neq_a_data *data, int x)
{

bool result = x != data->a;
return result;

}

int read_int();

int main()
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{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_push(s, 30);
int a = read_int();
struct neq_a_data *data = malloc(sizeof(struct neq_a_data));
if (data == 0) abort();
data->a = a;
stack_filter(s, neq_a, data);
free(data);
stack_dispose(s);
return 0;

}

How do we specify the stack module? Here’s an attempt:

//@ predicate int_predicate_data(void *data) = ??

typedef bool int_predicate(void *data, int x);
//@ requires int_predicate_data(data);
//@ ensures int_predicate_data(data);

struct node *nodes_filter(struct node *n, int_predicate *p, void *data)
//@ requires nodes(n, _) &*& is_int_predicate(p) == true &*& int_predicate_data(data);
//@ ensures nodes(result, _) &*& int_predicate_data(data);

{ ... }

void stack_filter(struct stack *stack, int_predicate *p, void *data)
//@ requires stack(stack, _) &*& is_int_predicate(p) == true &*& int_predicate_data(data);
//@ ensures stack(stack, _) &*& int_predicate_data(data);

{ ... }

The problem is in the definition of predicate int_predicate_data. There is no way for the stack module
to predict what data structure the data pointer points to. If we allow the client to choose the definition
of the predicate, we can verify the client easily:

//@ predicate int_predicate_data(void *data) = neq_a_data_a(data, _);

bool neq_a(struct neq_a_data *data, int x) //@ : int_predicate
//@ requires int_predicate_data(data);
//@ ensures int_predicate_data(data);

{
//@ open int_predicate_data(data);
bool result = x != data->a;
//@ close int_predicate_data(data);
return result;

}

int read_int();
//@ requires true;
//@ ensures true;

int main()
//@ requires true;
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//@ ensures true;
{

struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_push(s, 30);
int a = read_int();
struct neq_a_data *data = malloc(sizeof(struct neq_a_data));
if (data == 0) abort();
data->a = a;
//@ close int_predicate_data(data);
stack_filter(s, neq_a, data);
//@ open int_predicate_data(data);
free(data);
stack_dispose(s);
return 0;

}

However, this clearly is not feasible. After all, if our stack module has more than one client, we will have
multiple definitions for the same predicate. Specifically, we will have one definition of int_predicate_data
for each function of type int_predicate. The problem would be solved if we could refer specifically to the
definition of int_predicate_data corresponding to a given function of type int_predicate. This is exactly
what predicate families enable. A predicate family is like an ordinary predicate, except that you can have
multiple definitions, provided that each definition is associated with a distinct index. Predicate family
indices must be function pointers.

If we apply predicate families, we get the following specification for the stack module:

//@ predicate_family int_predicate_data(void *p)(void *data);

typedef bool int_predicate(void *data, int x);
//@ requires int_predicate_data(this)(data);
//@ ensures int_predicate_data(this)(data);

struct node *nodes_filter(struct node *n, int_predicate *p, void *data)
//@ requires nodes(n, _) &*& is_int_predicate(p) == true &*& int_predicate_data(p)(data);
//@ ensures nodes(result, _) &*& int_predicate_data(p)(data);

void stack_filter(struct stack *stack, int_predicate *p, void *data)
//@ requires stack(stack, _) &*& is_int_predicate(p) == true &*& int_predicate_data(p)(data);
//@ ensures stack(stack, _) &*& int_predicate_data(p)(data);

Notice that inside the contract of a function type, you can refer to the function pointer as this.
The client can be verified as follows:

struct neq_a_data {
int a;

};

/*@
predicate_family_instance int_predicate_data(neq_a)(void *data) =

neq_a_data_a(data, _);
@*/

bool neq_a(struct neq_a_data *data, int x) //@ : int_predicate
//@ requires int_predicate_data(neq_a)(data);
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//@ ensures int_predicate_data(neq_a)(data);
{

//@ open int_predicate_data(neq_a)(data);
bool result = x != data->a;
//@ close int_predicate_data(neq_a)(data);
return result;

}

int read_int();
//@ requires true;
//@ ensures true;

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_push(s, 30);
int a = read_int();
struct neq_a_data *data = malloc(sizeof(struct neq_a_data));
if (data == 0) abort();
data->a = a;
//@ close int_predicate_data(neq_a)(data);
stack_filter(s, neq_a, data);
//@ open int_predicate_data(neq_a)(data);
free(data);
stack_dispose(s);
return 0;

}

Exercise 18 Add a function stack_map that takes a function f that takes an int and returns an int.
stack_map replaces the value of each element of the stack with the result of applying f to it.

Write a client program that creates a stack containing the values 10, 20, 30; then reads a value from
the user; and then adds this value to each element of the stack using stack_map. Verify the memory safety
of the resulting program.

16 Generics

Consider the solution to Exercise 15, where we verified full functional correctness of a stack_reverse
function for a stack of integers. We used an ints inductive datatype, fixpoint functions append and
reverse, and lemmas append_nil and append_assoc. Suppose, now, that we need the same functionality
for a stack of pointers. Clearly, since C does not support generics, we will need to copy-paste the C
code and replace int with void * throughout. However, fortunately, VeriFast does support generics for
inductive datatypes, fixpoint functions, lemmas, and predicates, so instead of copy-pasting all of these,
we can parameterize them by the element type. Here are parameterized versions of ints, append, and
append_nil:

inductive list<t> = nil | cons(t, list<t>);

fixpoint list<t> append<t>(list<t> xs, list<t> ys) {
switch (xs) {
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case nil: return ys;
case cons(x, xs0): return cons<t>(x, append<t>(xs0, ys));

}
}

lemma void append_nil<t>(list<t> xs)
requires true;
ensures append<t>(xs, nil<t>) == xs;

{
switch (xs) {

case nil:
case cons(x, xs0):

append_nil<t>(xs0);
}

}

As you can see, an inductive datatype definition, fixpoint function definition, or lemma definition accepts
an optional type parameter list, which is a list of type parameters enclosed in angle brackets. Inside
the definition, the type parameters can be used just like other types. Whenever a type-parameterized
datatype, fixpoint, lemma, predicate, or constructor of a type-parameterized datatype, is mentioned, a
type argument list has to be supplied, which is a list of types enclosed in angle brackets.

Here’s what predicates nodes and stack and function stack_reverse look like for stacks of pointers:

predicate nodes(struct node *node, list<void *> values) =
node == 0 ?

values == nil<void *>
:

node->next |-> ?next &*& node->value |-> ?value &*& malloc_block_node(node) &*&
nodes(next, ?values0) &*& values == cons<void *>(value, values0);

predicate stack(struct stack *stack, list<void *> values) =
stack->head |-> ?head &*& malloc_block_stack(stack) &*& nodes(head, values);

void stack_reverse(struct stack *stack)
//@ requires stack(stack, ?values);
//@ ensures stack(stack, reverse<void *>(values));

{
//@ open stack(stack, values);
struct node *n = stack->head;
struct node *m = 0;
//@ close nodes(m, nil<void *>);
//@ append_nil<void *>(reverse<void *>(values));
while (n != 0)

/*@
invariant

nodes(m, ?values1) &*& nodes(n, ?values2) &*&
reverse<void *>(values) == append<void *>(reverse<void *>(values2), values1);

@*/
{

//@ open nodes(n, values2);
struct node *next = n->next;
//@ assert nodes(next, ?values2tail) &*& n->value |-> ?value;
n->next = m;
m = n;
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n = next;
//@ close nodes(m, cons<void *>(value, values1));
//@ append_assoc<void *>(reverse<void *>(values2tail), cons<void *>(value, nil<void *>), values1);

}
//@ open nodes(n, _);
stack->head = m;
//@ close stack(stack, reverse<void *>(values));

}

Thanks to generics, we can now re-use the same datatypes, fixpoints, and lemmas for both stacks of
ints and stacks of pointers. However, this approach does seem to introduce a lot of syntactic overhead,
considering how we need to insert type argument lists everywhere. Fortunately, VeriFast performs type
argument inference. If VeriFast encounters an occurrence of a type-parameterized entity in an expression
and no type argument list was specified, VeriFast will infer the type argument list. Since VeriFast’s type
system has no subtyping, a simple unification-based inference approach is sufficient. The result is that
you almost never have to supply type argument lists in expressions explicitly. Specifically, in the example,
all type argument lists in expressions can be omitted. Note: VeriFast does not infer type argument lists
in types; that is, when you mention a type-parameterized inductive datatype, you must always supply the
type arguments explicitly.

Of course, the list datatype is useful much more generally than just for stacks of integers and stacks
of pointers. In fact, verification of any non-trivial program will require the use of lists. For this reason,
VeriFast comes with a header file list.h that includes the list datatype, all of the fixpoints and lemmas
used in the example, and many more. This header file is implicitly included in each file that is verified by
VeriFast, so you do not need to include it explicitly. Note: This also means that you cannot define your
own versions of nil, cons, or other elements provided by list.h, since this would result in a name clash.

17 Predicate Values

In the previous section, we obtained a stack of pointers. In this section, we will use this stack to keep
track of a collection of objects.

Let’s try to verify the following program. It is a stack-based calculator for 2D vectors. It uses the
stack from the previous section. The user can push a vector onto the stack, replace the top two vectors
with their sum, and pop the top vector to print it.

struct vector {
int x;
int y;

};

struct vector *create_vector(int x, int y)
{

struct vector *result = malloc(sizeof(struct vector));
if (result == 0) abort();
result->x = x;
result->y = y;
return result;

}

int main()
{

struct stack *s = create_stack();
while (true)
{
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char c = input_char();
if (c == ’p’) {

int x = input_int();
int y = input_int();
struct vector *v = create_vector(x, y);
stack_push(s, v);

} else if (c == ’+’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v1 = stack_pop(s);
empty = stack_is_empty(s);
if (empty) abort();
struct vector *v2 = stack_pop(s);
struct vector *sum = create_vector(v1->x + v2->x, v1->y + v2->y);
free(v1);
free(v2);
stack_push(s, sum);

} else if (c == ’=’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v = stack_pop(s);
output_int(v->x);
output_int(v->y);
free(v);

} else {
abort();

}
}

}

The specification of create_vector is easy:

//@ predicate vector(struct vector *v) = v->x |-> _ &*& v->y |-> _ &*& malloc_block_vector(v);

struct vector *create_vector(int x, int y)
//@ requires true;
//@ ensures vector(result);

The tricky part is the loop invariant for the loop in main. The loop invariant should state that we have
a stack at s, and furthermore, that for each element of s, we have a vector. We can express the first part
using the assertion stack(s, ?values), and we can easily write a recursive predicate to express the second
part:

predicate vectors(list<struct vector *> vs) =
switch (vs) {

case nil: return true;
case cons(v, vs0): return vector(v) &*& vectors(vs0);

};

This would work fine. However, it is unfortunate that we have to define a new predicate whenever
we wish to express that we have a given predicate for each element of a list. To address this, VeriFast
supports predicate values. That is, you can pass a predicate as an argument to another predicate. This
allows us to generalize the above vectors predicate as follows:

predicate foreach(list<void *> vs, predicate(void *) p) =
switch (vs) {
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case nil: return true;
case cons(v, vs0): return p(v) &*& foreach(vs0, p);

};

Using generics, we can even generalize this predicate further, to work for lists of arbitrary values:

predicate foreach<t>(list<t> vs, predicate(t) p) =
switch (vs) {

case nil: return true;
case cons(v, vs0): return p(v) &*& foreach(vs0, p);

};

Note that type argument inference allows us to omit the type argument for the recursive foreach call.
This predicate is so generally useful that we included it in list.h; as a result, it is automatically

available in each file and you do not need to define it yourself.

Exercise 19 Verify the program using foreach.

18 Predicate Constructors

Let’s add a twist to the program of the previous section:

struct vector *create_vector(int limit, int x, int y)
{

if (x * x + y * y > limit * limit) abort();
struct vector *result = malloc(sizeof(struct vector));
if (result == 0) abort();
result->x = x;
result->y = y;
return result;

}

int main()
{

int limit = input_int();
struct stack *s = create_stack();
while (true)
{

char c = input_char();
if (c == ’p’) {

int x = input_int();
int y = input_int();
struct vector *v = create_vector(limit, x, y);
stack_push(s, v);

} else if (c == ’+’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v1 = stack_pop(s);
empty = stack_is_empty(s);
if (empty) abort();
struct vector *v2 = stack_pop(s);
struct vector *sum = create_vector(limit, v1->x + v2->x, v1->y + v2->y);
free(v1);
free(v2);
stack_push(s, sum);
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} else if (c == ’=’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v = stack_pop(s);
int x = v->x;
int y = v->y;
free(v);
assert(x * x + y * y <= limit * limit);
output_int(x);
output_int(y);

} else {
abort();

}
}

}

The program now starts by asking the user for a number that will serve as a limit on the size of the
vectors. When creating a vector, the program checks that its size does not exceed the limit; otherwise it
aborts. When printing a vector, the program asserts that the vector satisfies the size limit.

How do we verify this assert statement?
We will need to extend the vector predicate to include the information that the vector’s size is within

the limit. However, the limit is a local variable and is not in scope in the predicate definition. So we
need to pass it as an additional argument. But then we can no longer use the foreach predicate, since
it expects a predicate that takes just one parameter. To address this, VeriFies supports partially applied
predicates, in the form of predicate constructors. To verify the example program, we can define a predicate
constructor vector as follows:

/*@
predicate_ctor vector(int limit)(struct vector *v) =

v->x |-> ?x &*& v->y |-> ?y &*& malloc_block_vector(v) &*& x * x + y * y <= limit * limit;
@*/

We can express that for each element of a list values we have a vector that satisfies limit limit as follows:

foreach(values, vector(limit))

That is, wherever we can use a predicate name, we can also use a predicate constructor applied to an
argument list. We can do so in open statements, in close statements, and in assertions.

Note: VeriFast currently does not support patterns in predicate constructor argument positions.

Exercise 20 Verify the program.

19 Multithreading

Consider the following program that walks a binary tree of integers, computes the faculty of the value of
each node, sums up the results, and prints the sum to the console.

int rand();

int fac(int x)
{

int result = 1;
while (x > 1)
{

result = result * x;
x = x - 1;
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}
return result;

}

struct tree {
struct tree *left;
struct tree *right;
int value;

};

struct tree *make_tree(int depth)
{

if (depth == 0) {
return 0;

} else {
struct tree *left = make_tree(depth - 1);
struct tree *right = make_tree(depth - 1);
int value = rand();
struct tree *t = malloc(sizeof(struct tree));
if (t == 0) abort();
t->left = left;
t->right = right;
t->value = value % 2000;
return t;

}
}

int tree_compute_sum_facs(struct tree *tree)
{

if (tree == 0) {
return 1;

} else {
int leftSum = tree_compute_sum_facs(tree->left);
int rightSum = tree_compute_sum_facs(tree->right);
int f = fac(tree->value);
return leftSum + rightSum + f;

}
}

int main()
{

struct tree *tree = make_tree(22);
int sum = tree_compute_sum_facs(tree);
printf("%i", sum);
return 0;

}

Exercise 21 Verify the memory safety of this program. You may leak the tree (see Section 4) after
computing the sum.

This program takes 14 seconds on the author’s machine. However, the author’s machine is a dual core
machine, so we might be able to get a speedup if we distribute the work amongst two threads, which may
then be scheduled by the operating system on both cores simultaneously.
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Unfortunately, the C language does not define a standard mechanism for writing multithreaded pro-
grams.5 Programs for Windows can use the Windows API, and programs for Unix-like operating systems
can typically use the POSIX pthreads API. However, the VeriFast distribution includes a wrapper around
these APIs that offers a uniform interface across all supported platforms. It is defined in threading.h and
implemented in threading.c; both files are in the VeriFast bin directory. VeriFast automatically looks for
header files in its bin directory, so to use these APIs, simply add the line

#include "threading.h"

to the top of your file. In this section, we will be using the functions thread_start_joinable and
thread_join from threading.h, defined as follows:

typedef void thread_run_joinable(void *data);

struct thread;

struct thread *thread_start_joinable(void *run, void *data);

void thread_join(struct thread *thread);

Function thread_start_joinable takes a pointer to a run function and executes this function in a new
thread. Any data required by the run function can be passed via the data parameter of thread_start_joinable,
which is simply passed through to the run function. thread_start_joinable returns a thread handle, which
can be used to join with the created thread using function thread_join. The latter waits until the specified
thread has finished.

We can use these functions to speed up our example program as follows:

struct sum_data {
struct thread *thread;
struct tree *tree;
int sum;

};

void summator(struct sum_data *data)
{

int sum = tree_compute_sum_facs(data->tree);
data->sum = sum;

}

struct sum_data *start_sum_thread(struct tree *tree)
{

struct sum_data *data = malloc(sizeof(struct sum_data));
struct thread *t = 0;
if (data == 0) abort();
data->tree = tree;
t = thread_start_joinable(summator, data);
data->thread = t;
return data;

}

int join_sum_thread(struct sum_data *data)
{

thread_join(data->thread);
return data->sum;

5The recent C standard revision C11 introduces support for multithreading, but it is not yet widely supported.
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}

int main()
{

struct tree *tree = make_tree(22);
struct sum_data *leftData = start_sum_thread(tree->left);
struct sum_data *rightData = start_sum_thread(tree->right);
int sumLeft = join_sum_thread(leftData);
int sumRight = join_sum_thread(rightData);
int f = fac(tree->value);
printf("%i", sumLeft + sumRight + f);
return 0;

}

The main program creates a tree of depth 22. It then starts two threads. The first thread computes the
sum of the faculties of the values of the left subtree, and the second thread computes the sum of the
faculties of the values of the right subtree. The main thread then waits for both threads to finish, and
finally sums up the results of both threads with the faculty of the root node’s value. On the author’s
machine, this program takes only 7 seconds; a twofold speedup!

Now, let’s verify the memory safety of this program. The verification of this program does not require
any new techniques; we will simply apply the techniques we saw in Sections 12 and 15 on function pointers
and predicate families. That is, we specify a contract for the thread_run_joinable function pointer type
and we use predicate families so that each program may concretize this contract according to its needs.
The specification of thread_start_joinable and thread_join in threading.h is as follows:

/*@

predicate_family thread_run_pre(void *thread_run)(void *data, any info);
predicate_family thread_run_post(void *thread_run)(void *data, any info);

@*/

typedef void thread_run_joinable(void *data);
//@ requires thread_run_pre(this)(data, ?info);
//@ ensures thread_run_post(this)(data, info);

struct thread;

/*@ predicate thread(struct thread *thread, void *thread_run, void *data, any info); @*/

struct thread *thread_start_joinable(void *run, void *data);
//@ requires is_thread_run_joinable(run) == true &*& thread_run_pre(run)(data, ?info);
//@ ensures thread(result, run, data, info);

void thread_join(struct thread *thread);
//@ requires thread(thread, ?run, ?data, ?info);
//@ ensures thread_run_post(run)(data, info);

Function thread_start_joinable requires that the value of parameter run is a function pointer that satisfies
the contract of function pointer type thread_run_joinable; furthermore, it requires the resources that are
required by the run function itself, denoted by the thread_run_pre(run) predicate family instance. This
predicate takes the data pointer as an argument, so that the precondition may describe the data structure
pointed to by this pointer. The info parameter of thread_run_pre and thread_run_post is used in advanced
scenarios and may be ignored for now. Function thread_start_joinable returns a thread predicate that
contains all information required to verify the thread_join call. Function thread_join takes this thread
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predicate and returns the resources provided by the run function when it returns, as described by the
thread_run_post(run) predicate family instance.

Exercise 22 Verify the memory safety of the program. Don’t worry about memory deallocation; simply
leak chunks that you no longer need.

20 Fractional Permissions

Suppose, now, that we want to adapt the program of the previous section as follows: instead of computing
just the sum of the faculties, we want to compute both the sum of the faculties and the product of the
faculties. Since our machine has two cores, we want to have two threads: one that computes the sum of
the faculties of the values of the nodes of the tree, and one that computes the product of the faculties of
the values of the nodes of the tree.

To achieve this, first we generalize our tree_compute_sum_facs function to a tree_fold function that
takes the function that it should apply to combine the node values as an argument:

typedef int fold_function(int acc, int x);

int tree_fold(struct tree *tree, fold_function *f, int acc)
{

if (tree == 0) {
return acc;

} else {
acc = tree_fold(tree->left, f, acc);
acc = tree_fold(tree->right, f, acc);
acc = f(acc, tree->value);
return acc;

}
}

If the elements of the tree t in postfix order are e1, e2, e3, e4, then tree_fold(t, f, a) returns

f(f(f(f(a, e1), e2), e3), e4)

Likewise, we generalize our summator thread to a folder thread:

struct fold_data {
struct thread *thread;
struct tree *tree;
fold_function *f;
int acc;

};

void folder(struct fold_data *data)
{

int acc = tree_fold(data->tree, data->f, data->acc);
data->acc = acc;

}

struct fold_data *start_fold_thread(struct tree *tree, fold_function *f, int acc)
{

struct fold_data *data = malloc(sizeof(struct fold_data));
struct thread *t = 0;
if (data == 0) abort();
data->tree = tree;
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data->f = f;
data->acc = acc;
t = thread_start_joinable(folder, data);
data->thread = t;
return data;

}

int join_fold_thread(struct fold_data *data)
{

thread_join(data->thread);
return data->acc;

}

We can re-implement the program of the previous section using folder threads as follows:

int sum_function(int acc, int x)
{

int f = fac(x);
return acc + f;

}

int main()
//@ requires true;
//@ ensures true;

{
struct tree *tree = make_tree(22);
//@ open tree(tree, _);
struct fold_data *leftData = start_fold_thread(tree->left, sum_function, 0);
struct fold_data *rightData = start_fold_thread(tree->right, sum_function, 0);
int sumLeft = join_fold_thread(leftData);
int sumRight = join_fold_thread(rightData);
int f = fac(tree->value);
//@ leak tree->left |-> _ &*& tree->right |-> _ &*& tree->value |-> _ &*& malloc_block_tree(tree);
printf("%i", sumLeft + sumRight + f);
return 0;

}

Exercise 23 Verify the memory safety of this program.

It is now easy to write the program that computes the sums in one thread and the products in another,
and returns the difference between the product and the sum:

int sum_function(int acc, int x)
{

int f = fac(x);
return acc + f;

}

int product_function(int acc, int x)
{

int f = fac(x);
return acc * f;

}
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int main()
{

struct tree *tree = make_tree(21);
struct fold_data *sumData = start_fold_thread(tree, sum_function, 0);
struct fold_data *productData = start_fold_thread(tree, product_function, 1);
int sum = join_fold_thread(sumData);
int product = join_fold_thread(productData);
printf("%i", product - sum);
return 0;

}

However, this program cannot be verified using the techniques that we have seen. The first start_fold_-
thread call consumes the tree chunk, and therefore VeriFast will complain that the second call’s precondi-
tion is not satisfied. In the system, as explained, only one thread may own a particular chunk of memory
at any one time. Therefore, if the sum thread owns the tree, the product thread cannot access it si-
multaneously. However, this is in fact safe, so long as both threads only read and do not modify the
tree.

VeriFast supports the read-only sharing of chunks of memory using fractional permissions. Each chunk
in the VeriFast symbolic heap has a coefficient, which is a real number between zero, exclusive, and one,
inclusive. The default coefficient is 1 and is not shown. If a chunk’s coefficient is not 1, it is shown to the
left of the chunk enclosed in square brackets. A chunk with coefficient 1 represents a full permission, that
is, a read-write permission. A chunk with a coefficient less than 1 represents a fractional permission, that
is, a read-only permission.

Since the tree_fold function does not modify the tree, it requires only a fraction of the tree chunk:

int tree_fold(struct tree *tree, fold_function *f, int acc)
//@ requires [?frac]tree(tree, ?depth) &*& is_fold_function(f) == true;
//@ ensures [frac]tree(tree, depth);

{
if (tree == 0) {

return acc;
} else {

//@ open [frac]tree(tree, depth);
acc = tree_fold(tree->left, f, acc);
acc = tree_fold(tree->right, f, acc);
acc = f(acc, tree->value);
return acc;
//@ close [frac]tree(tree, depth);

}
}

Notice that we use a pattern in the coefficient position, so that the function may be applied to an arbitrarily
small fraction of the tree chunk. Notice also that we mention the fraction in the open and close statements.
This is not necessary for the open statement, since it will by default open whatever fraction is present in
the symbolic heap, but it is necessary for the close statement, since it will by default attempt to close a
chunk with coefficient 1.

Exercise 24 Verify the memory safety of the program. Adapt function start_fold_thread so that it
requires only a 1/2 fraction of the tree chunk. Note: decimal notation is not supported; use fractional
notation instead.

21 Precise Predicates

The program of the previous section leaks large amounts of memory. This is fine, since the leaks occur
only just before the program ends anyway. However, suppose now that this program was part of a larger,
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long-running program; in that case it would be important to eliminate the leaks. Therefore, in this section,
let’s attempt to eliminate the leak commands from the program of the previous section.

First of all, we need to update the C program so that it properly deallocates all dynamically allocated
memory. We need to introduce a function dispose_tree and update functions join_fold_thread and main:

void dispose_tree(struct tree *tree)
{

if (tree != 0) {
dispose_tree(tree->left);
dispose_tree(tree->right);
free(tree);

}
}

int join_fold_thread(struct fold_data *data)
{

thread_join(data->thread);
int result = data->acc;
free(data);
return result;

}

int main()
{

struct tree *tree = make_tree(21);
struct fold_data *sumData = start_fold_thread(tree, sum_function, 0);
struct fold_data *productData = start_fold_thread(tree, product_function, 1);
int sum = join_fold_thread(sumData);
int product = join_fold_thread(productData);
dispose_tree(tree);
printf("%i", product - sum);
return 0;

}

Updating the annotations is slightly trickier. First, let’s do the easy part: verifying the free statement
in function join_fold_thread. It already has almost all required permissions; only the malloc_block_fold_data
chunk is missing. This chunk is leaked in function start_fold_thread. Removing that leak statement and
adding the chunk to the ensures clause of start_fold_thread and the requires clause of join_fold_thread
solves that problem; the free statement now verifies.

All that is left now is to verify the dispose_tree call in function main. It needs full permission for the
tree, i.e. it needs a tree(tree, _) chunk. Notice that each join_fold_thread call leaks a [1/2]tree(tree, _)
chunk. We need to update the annotations of function join_fold_thread so that it returns this chunk to
its caller instead of leaking it. However, we currently have no way to identify the tree in the contract of
join_fold_thread, and a [1/2]tree(_, _) chunk would not help us, since we would not know in main that
the chunk pertains to the specific tree that we are disposing.

To solve this problem, notice that the tree is pointed to by field data->tree in the pre-state of function
join_fold_thread. However, we cannot mention this field in function join_fold_thread’s precondition
since we have passed full permission for this field to the folder thread.

The solution is to pass only a fraction of the permission for field data->tree to the fold thread,
and to retain the remaining fraction in the main thread. To do so, update the thread_run_pre and
thread_run_post predicate family instances, as well as the contracts of functions start_fold_thread and
join_fold_thread:

predicate_family_instance thread_run_pre(folder)(struct fold_data *data, any info) =
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[1/2]data->tree |-> ?tree &*& [1/2]tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;

predicate_family_instance thread_run_post(folder)(struct fold_data *data, any info) =
[1/2]data->tree |-> ?tree &*& [1/2]tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;

struct fold_data *start_fold_thread(struct tree *tree, fold_function *f, int acc)
//@ requires [1/2]tree(tree, _) &*& is_fold_function(f) == true;
/*@
ensures

[1/2]result->tree |-> tree &*& result->thread |-> ?t &*&
thread(t, folder, result, _) &*& malloc_block_fold_data(result);

@*/
int join_fold_thread(struct fold_data *data)

/*@
requires

[1/2]data->tree |-> ?tree &*& data->thread |-> ?t &*&
thread(t, folder, data, _) &*& malloc_block_fold_data(data);

@*/
//@ ensures [1/2]tree(tree, _);

We can now specify the [1/2]tree(tree, _) chunk in the postcondition of function join_fold_thread.
Notice that we now have two [1/2]tree(tree, _) chunks in function main at the dispose_tree call.

We have two half chunks, and we need one full chunk; why does VeriFast not simply merge the two halves?
The reason is that merging two fractional chunks into a single chunk is not always a sound (i.e., safe)

thing to do. For example, the following program verifies:

/*@

predicate foo(bool b) = true;

predicate bar(int *x, int *y) = foo(?b) &*& b ? integer(x, _) : integer(y, _);

lemma void merge_bar() // This lemma is false!!
requires [?f1]bar(?x, ?y) &*& [?f2]bar(x, y);
ensures [f1 + f2]bar(x, y);

{
assume(false);

}

@*/

int main()
//@ requires true;
//@ ensures true;

{
int x, y;
//@ close [1/2]foo(true);
//@ close [1/2]bar(&x, &y);
//@ close [1/2]foo(false);
//@ close [1/2]bar(&x, &y);
//@ merge_bar();
//@ open bar(&x, &y);
//@ assert foo(?b);
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//@ if (b) integer_unique(&x); else integer_unique(&y);
assert(false);

}

This program demonstrates that assuming that any two fractions of a given chunk can be merged into
a single chunk, leads to unsoundness (i.e. a program that raises an assertion failure at run time verifies
successfully). It uses the following lemma from prelude.h:

lemma void integer_unique(int *p);
requires [?f]integer(p, ?v);
ensures [f]integer(p, v) &*& f <= 1;

The problem is that the two [1/2]bar(&x, &y) chunks do not represent the same memory region:
one represents [1/2]integer(&x, _) and the other one represents [1/2]integer(&y, _). Combining them
yields neither integer(&x, _) nor integer(&y, _).

However, merging two fractions is sound if both fractions represent the same memory region. To
support this, VeriFast supports the notion of precise predicates: you can declare a predicate as precise by
writing a semicolon instead of a comma between the input parameters and the output parameters in the
predicate’s parameter list. For such a predicate, VeriFast checks that two chunks with the same input
arguments represent the same memory region and always have the same output arguments. VeriFast
automatically merges fractions of precise predicates that have the same input arguments.

For example, predicate integer itself is a precise predicate; it is declared in prelude.h as follows:

predicate integer(int *p; int v);

This declaration specifies that predicate integer is precise and has one input parameter p and one output
parameter v. When VeriFast detects two chunks [f1]integer(p1, v1) and [f2]integer(p2, v2) and it
can prove that p1 equals p2, then it merges the chunks into a single chunk [f1 + f2]integer(p1, v1) and
it produces the assumption that v1 equals v2.

In conclusion, to verify our example program, we need to declare predicate tree as precise:

predicate tree(struct tree *t; int depth) =
t == 0 ?

depth == 0
:

t->left |-> ?left &*& t->right |-> ?right &*& t->value |-> _ &*& malloc_block_tree(t) &*&
tree(left, ?childDepth) &*& tree(right, childDepth) &*& depth == childDepth + 1;

Notice that we rephrased the body of the predicate slightly so that it is accepted by VeriFast’s preciseness
analysis. The program now verifies.

The preciseness analysis checks that the body of the predicate is precise under the input parameters
and fixes the output parameters. The rules for the various forms of assertions being precise under a set of
fixed variables X are as follows:

• A predicate assertion is precise under X if the predicate is precise and the input arguments are
fixed by X; it fixes any variables that appear as output arguments. For example, for assertion
p(x + y, z) to be considered precise, p must be a precise predicate. Furthermore, suppose it has
one input parameter. Then x and y must be in X, and the assertion fixes z.

• A fractional assertion is precise under X if the coefficient is fixed by X or it is a dummy pattern
and the body is precise under X; it fixes any variables fixed by its body.

• A boolean assertion is always precise under any X. It does not fix any variables, unless it is an
equality and the left-hand side is a variable and the right-hand side is fixed by X; in that case, it
fixes the variable on the left-hand side.

• A conditional assertion is precise under X if the condition is fixed by X and each branch is precise
under X; the fixed variables are the variables that are fixed by all branches.
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• Similarly, a switch assertion is precise under X if its operand is fixed by X and each branch is precise
under the union of X and the constructor arguments; the fixed variables are the variables that are
fixed by all branches.

• A separating conjunction is precise under X if its first operand is precise under X, and its second
operand is precise under the union of X and the variables fixed by the first operand. It fixes the
variables fixed by either operand.

That is, the analysis traverses the assertion from left to right, tracking the set of fixed variables. Input
arguments of nested predicate assertions and branch conditions must depend only on variables that are
already fixed; variables that appear as output arguments of nested predicate assertions or on the left-hand
side of equalities whose right-hand side is fixed are added to the set of fixed variables.

22 Auto-open/close

In the preceding section, we introduced VeriFast’s support for precise predicates so that we could merge
fractions of the same chunk. However, declaring a predicate as precise has another advantage: it enables
VeriFast’s logic for automatically opening and closing the predicate. This cuts down on the number of
open and close commands that you need to write explicitly.

Specifically, when VeriFast is consuming a predicate assertion, and no matching chunk exists in the
symbolic heap, but the predicate is precise and all input arguments are specified in the assertion, then
auto-open or auto-close is attempted. Auto-close is performed if a chunk that appears in the body of the
predicate is found in the symbolic heap; auto-open is performed if the desired chunk appears in the body
of some chunk that appears in the symbolic heap.

For example, in the program of the preceding section this allows us to remove all ghost commands for
opening or closing tree chunks.

23 Mutexes

Suppose we want to write a program that monitors two sensors and that prints the total number of pulses
detected by both sensors, once every second. We can wait for a pulse from a given sensor using the API
function wait_for_pulse. Since pulses come in at both sensors simultaneously, we need to wait for pulses
from each sensor in a separate thread. Whenever a pulse comes in at a sensor, the corresponding thread
increments a counter that is shared between the threads. The main thread prints the value of the counter
once every second.

When multiple threads access the same variable concurrently, such as the counter in this example,
then they need to synchronize their accesses; otherwise, two concurrent accesses may interfere, causing
the result to be different from the result that would be obtained if the accesses were performed one after
the other. Most programming platforms provide various synchronization constructs to synchronize threads
in various ways.

Perhaps the most common synchronization construct is the mutual exclusion lock, also known as a
lock or a mutex. At any point, a mutex is in one of two states: either it is free, or it is held by some
thread. A mutex can never be held by more than one thread. Mutexes provide two operations: acquire
and release. When a thread attempts to acquire a mutex, there are two cases.

• if the mutex is free, the attempt succeeds and the thread holds the mutex until it releases it.

• if the mutex is held by some other thread, the thread that performed the attempt blocks until the
mutex is free.

• if the mutex is already held by the thread that attempts to acquire it, then the result depends on
whether the mutex is re-entrant or non-re-entrant. If the mutex is re-entrant, the attempt succeeds
and the thread still holds the lock. If the mutex is non-re-entrant, the attempt fails. This either
means that the thread blocks forever, or that an error occurs and the program is terminated.
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The C language does not itself offer any synchronization constructs; rather, the operating system does.
For example, the Windows API offers a mutex construct called critical sections, and the Linux API offers
a mutex construct called mutexes. To enable a uniform interface across all platforms, VeriFast includes a
module threading.c that offers two synchronization constructs: mutexes and locks. The only difference
between the two is that mutexes are non-re-entrant and locks are re-entrant. Since mutexes are easier to
use, we will use those in this example.

Here’s the source code of the example program:

#include "stdlib.h"
#include "threading.h"

void wait_for_pulse(int source);
void sleep(int millis);
void print_int(int n);

struct counter {
int count;
struct mutex *mutex;

};

struct count_pulses_data {
struct counter *counter;
int source;

};

void count_pulses(struct count_pulses_data *data) {
struct counter *counter = data->counter;
int source = data->source;
free(data);

struct mutex *mutex = counter->mutex;

while (true) {
wait_for_pulse(source);
mutex_acquire(mutex);
counter->count++;
mutex_release(mutex);

}
}

void count_pulses_async(struct counter *counter, int source) {
struct count_pulses_data *data = malloc(sizeof(struct count_pulses_data));
if (data == 0) abort();
data->counter = counter;
data->source = source;
thread_start(count_pulses, data);

}

int main() {
struct counter *counter = malloc(sizeof(struct counter));
if (counter == 0) abort();
counter->count = 0;
struct mutex *mutex = create_mutex();
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counter->mutex = mutex;

count_pulses_async(counter, 1);
count_pulses_async(counter, 2);

while (true) {
sleep(1000);
mutex_acquire(mutex);
print_int(counter->count);
mutex_release(mutex);

}
}

For this program we use the threading API function thread_start instead of thread_start_joinable,
since we will not be joining the thread. The specification of function thread_start is analogous to the spe-
cification of function thread_start_joinable discussed in Section 19; it is given in header file threading.h
as follows:

//@ predicate_family thread_run_data(void *thread_run)(void *data);

typedef void thread_run(void *data);
//@ requires thread_run_data(this)(data);
//@ ensures true;

void thread_start(void *run, void *data);
//@ requires is_thread_run(run) == true &*& thread_run_data(run)(data);
//@ ensures true;

It’s easy to make mistakes when programming using mutexes. The worst problem is if the programmer
forgets to acquire the mutex before accessing the data structure that it protects. The consequence will be
incorrect results, but this may be difficult to diagnose.

Fortunately, VeriFast can help us catch these tricky bugs. Remember from the preceding sections that
as a result of VeriFast’s checks, each thread can access only the memory locations that it owns, and no
two threads can (fully) own the same memory location at the same time. This prevents interference from
concurrent accesses. But how, then, can threads share a mutable variable? The answer is, of course, using
mutexes. When a mutex is created, it takes ownership of a certain set of memory locations, as specified
by its lock invariant. When a thread acquires a mutex, the memory locations that were owned by the
mutex now become owned by the thread, until the thread releases the mutex, at which point the memory
locations again become the property of the mutex. This way, by sharing a mutex, threads can indirectly
share arbitrary memory locations in a well-synchronized way.

The mutex functions offered by threading.c are specified in threading.h as follows:

struct mutex;

/*@
predicate mutex(struct mutex *mutex; predicate() p);
predicate mutex_held(struct mutex *mutex, predicate() p, int threadId, real frac);
predicate create_mutex_ghost_arg(predicate() p) = true;
@*/

struct mutex *create_mutex();
//@ requires create_mutex_ghost_arg(?p) &*& p();
//@ ensures mutex(result, p);

void mutex_acquire(struct mutex *mutex);
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//@ requires [?f]mutex(mutex, ?p);
//@ ensures mutex_held(mutex, p, currentThread, f) &*& p();

void mutex_release(struct mutex *mutex);
//@ requires mutex_held(mutex, ?p, currentThread, ?f) &*& p();
//@ ensures [f]mutex(mutex, p);

void mutex_dispose(struct mutex *mutex);
//@ requires mutex(mutex, ?p);
//@ ensures p();

When you create a mutex, you need to specify the lock invariant that specifies the memory locations
that will be owned by the mutex. You do so by specifying a predicate value (see Section 17). Since the real
function create_mutex cannot take the predicate value as a real argument, it takes it as a ghost argument,
in the form of the argument of the create_mutex_ghost_arg predicate, which exists only for this purpose.
That is, before calling create_mutex, you need to close a create_mutex_ghost_arg chunk, whose argument
is the name of the predicate that specifies the lock invariant for the new mutex. The create_mutex call
consumes the ghost argument chunk and the lock invariant chunk itself, and produces a mutex chunk that
represents the mutex. This chunk specifies the lock invariant as its second argument.

To allow multiple threads to share a mutex, a mutex chunk can be split into multiple fractions. Only a
fraction of a mutex chunk is required to acquire the mutex. When the mutex is acquired, the mutex chunk
fraction is transformed into a mutex_held chunk, that specifies not only the mutex and the lock invariant,
but also the thread that acquired the mutex and the coefficient of the mutex chunk fraction that was used
to acquire the mutex. The mutex_acquire call additionally produces the lock invariant, giving the thread
access to the memory locations that were owned by the mutex.

The mutex_release call consumes a mutex_held chunk for the current thread, as well as the lock
invariant, and produces the original mutex chunk that was used to acquire the lock.

If necessary, after a program is done using a mutex, it can reassemble all mutex chunk fractions and
dispose the mutex; this returns ownership of the lock invariant to the thread that disposes the mutex.

Exercise 25 Verify the example program.

24 Leaking and Dummy Fractions

We start from the example program of the previous section. In that program, the number of pulse sources
is fixed. Suppose now that sources are connected and disconnected dynamically. Initially, there are no
sources. Suppose there is an API function wait_for_source that waits for a new source to be connected
and returns its identifier. Suppose further that API function wait_for_pulse now returns a boolean. If the
result is false, it means a new pulse was detected; if it is true, it means the source has been disconnected.
The goal remains to count the total number of pulses detected across all sources, and print it out once a
second. The following program achieves this:

#include "stdlib.h"
#include "threading.h"

int wait_for_source();
bool wait_for_pulse(int source); // true means the sensor has been removed.
void sleep(int millis);
void print_int(int n);

struct counter {
int count;
struct mutex *mutex;

};
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struct count_pulses_data {
struct counter *counter;
int source;

};

void count_pulses(struct count_pulses_data *data) {
struct counter *counter = data->counter;
int source = data->source;
free(data);

struct mutex *mutex = counter->mutex;
bool done = false;
while (!done) {

done = wait_for_pulse(source);
if (!done) {

mutex_acquire(mutex);
counter->count++;
mutex_release(mutex);

}
}

}

void count_pulses_async(struct counter *counter, int source) {
struct count_pulses_data *data = malloc(sizeof(struct count_pulses_data));
if (data == 0) abort();
data->counter = counter;
data->source = source;
thread_start(count_pulses, data);

}

void print_count(struct counter *counter) {
struct mutex *mutex = counter->mutex;
while (true) {

sleep(1000);
mutex_acquire(mutex);
print_int(counter->count);
mutex_release(mutex);

}
}

int main() {
struct counter *counter = malloc(sizeof(struct counter));
if (counter == 0) abort();
counter->count = 0;
struct mutex *mutex = create_mutex();
counter->mutex = mutex;

thread_start(print_count, counter);

while (true) {
int source = wait_for_source();
count_pulses_async(counter, source);
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}
}

Notice that in the example program of the previous section, the mutex was shared amongst three threads,
whereas now it may at any time be shared amongst arbitrarily many threads. This has consequences for
verification: whereas in the previous section we could get away with giving each thread one third of the
mutex chunk, splitting up the fractions in the current example is more complicated.

Furthermore, there is another problem: when a count_pulses thread terminates, it still owns a fraction
of the mutex. VeriFast complains about this as part of its leak check. Indeed, in general, leaking mutexes
can cause the program to eventually run out of memory. However, in the case of this program, leaking
the one mutex is not a problem. And since the mutex chunk fractions will be leaked anyway and will
never be reassembled to dispose the mutex, there is not really any point in carefully keeping track of the
coefficients of the various fractions.

VeriFast has a feature called dummy fractions that makes it easy to deal with chunks that are shared
among many threads and that will never be reassembled. Specifically, applying the leak ghost command
to a chunk does not remove the chunk but simply replaces the chunk’s coefficient with a dummy fraction
coefficient symbol. A chunk whose coefficient is a dummy fraction coefficient symbol is called a dummy
fraction. When VeriFast performs the leak check at the end of each function, it complains only about
chunks that are not dummy fractions.

Dummy fractions are denoted in assertions using dummy patterns, as in [_]chunk(args). When consu-
ming an assertion with a dummy coefficient, the matching chunk must be a dummy fraction, or VeriFast
reports an error since matching the chunk would implicitly leak it. When producing an assertion with a
dummy coefficient, the produced chunk is a dummy fraction.

To make it easy to share dummy fractions arbitrarily, when consuming a dummy fraction assertion,
VeriFast automatically splits the matching chunk in two: one part is consumed, and the other part remains
in the symbolic heap.

Exercise 26 Verify the example program. Leak the mutex chunk directly after creating it. Use dummy
patterns to denote the mutex chunk fractions’ coefficients in assertions.

25 Character Arrays

Let’s verify a program that reads a fixed number of characters from standard input and then writes them
out twice. Here’s a version that reads 5 characters:

char getchar();
void putchar(char c);

int main()
{

char c1 = getchar();
char c2 = getchar();
char c3 = getchar();
char c4 = getchar();
char c5 = getchar();
for (int i = 0; i < 2; i++) {

putchar(c1);
putchar(c2);
putchar(c3);
putchar(c4);
putchar(c5);

}
return 0;

}
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This program works.6 If we run the program and enter Hello, we get back HelloHello.
However, clearly this approach is not practical for large numbers of characters. One approach that

works for large numbers of characters is to use an array of characters. We allocate the array using the
standard C function malloc and then read and write the characters using a recursive function. For now,
we don’t worry about freeing the array at the end of the program. Let’s first again do a version that reads
5 characters.

char getchar();
void putchar(char c);

char *malloc(int count);

void getchars(char *start, int count) {
if (count > 0) {

char c = getchar();

*start = c;
getchars(start + 1, count - 1);

}
}

void putchars(char *start, int count) {
if (count > 0) {

char c = *start;
putchar(c);
putchars(start + 1, count - 1);

}
}

int main() {
char *array = malloc(5);
getchars(array, 5);
putchars(array, 5);
putchars(array, 5);
return 0;

}

This program works.7 Now let’s verify it.
It’s always a good approach to simply run VeriFast on the program and see where it complains. If you

verify the above program, VeriFast complains that the functions have no contract. Let’s start by giving
each function the simplest possible contract:

//@ requires true;
//@ ensures true;

VeriFast now complains at the following line in function getchars:

*start = c;

This statement writes character c into the memory location at address start. Whenever VeriFast sees
such a statement, it checks that the function has permission to write to this location. Specifically, it checks
that a chunk that matches character(start, _) is present in the symbolic heap. In this case, there is
no such chunk in the symbolic heap, since the requires clause of getchars does not mention it and the
function also does not get it from anywhere else.

6We simplified the return type of getchar a little bit; the real function returns an int. But this version should compile
and run just fine.

7We ignore malloc failures for now.
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To solve this problem, we need to specify in the requires clause of function getchars that whoever calls
the function must give it permission to write to the location at address start, at least if parameter count
is greater than zero. As a good citizen, we also give the permission back to the caller when we are done
with it, as specified in the ensures clause:

//@ requires count > 0 ? character(start, _) : true;
//@ ensures count > 0 ? character(start, _) : true;

If we run VeriFast again, we see that VeriFast now accepts the assignment to *start. However, it now
complains at the recursive call of getchars. Indeed, if count is greater than one, then the recursive call
needs permission to access the location at address start + 1. Let’s extend our contract to reflect this:

//@ requires count > 0 ? character(start, _) &*& (count > 1 ? character(start + 1, _) : true) : true;
//@ ensures count > 0 ? character(start, _) &*& (count > 1 ? character(start + 1, _) : true) : true;

Alas, if we run VeriFast again, we notice VeriFast complains again at the recursive call.8 Indeed, if count
is greater than 2, the recursive call now needs to permission to access the location at address start + 2.

We can patch up the contract again, but will it ever end? If we step back and think about what
getchars does, we realize that a call getchars(start, count) requires permission to access the locations
in the range start through start + count - 1. How can we express this? If we support only up to 5
characters, we can use the following precondition:

/*@
requires

count <= 0 ? true :
character(start, _) &*&
(count - 1 <= 0 ? true :

character(start + 1, _) &*&
(count - 2 <= 0 ? true :

character(start + 2, _) &*&
(count - 3 <= 0 ? true :

character(start + 3, _) &*&
(count - 4 <= 0 ? true :

character(start + 4, _) &*&
(count - 5 <= 0 ? true :

false)))));
@*/

If we use this same assertion as the postcondition as well, function getchars verifies. And if we use the
same contract for putchars, that function verifies as well. And we can use the same assertion as the
postcondition of malloc, provided that we replace the variable name start by result. The only problem
left now is that VeriFast complains at the end of function main that we leak five memory locations. We
can tell VeriFast that we are happy to do so by inserting the following ghost statement at the end of the
function:

/*@
leak

character(array, _) &*& character(array + 1, _) &*& character(array + 2, _) &*&
character(array + 3, _) &*& character(array + 4, _);

@*/

The program now verifies. Great!

Exercise 27 Modify the program so that it reads 100 characters.

8Remember to disable arithmetic overflow checking in the Verify menu.
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Did you finish the exercise? No? I don’t blame you. Of course, writing these contracts for large counts is
totally impractical.

The solution is to use recursive predicates. Notice that the precondition of getchars has a recursive
structure. By giving a name to the assertion, and then using this name in the assertion itself, we can
make the assertion go on forever:

predicate characters(char *start, int count) =
count <= 0 ? true : character(start, _) &*& characters(start + 1, count - 1);

You can obtain something very close to the precondition of getchars by unrolling this predicate five
times, i.e. by replacing the occurrence of characters with its definition five times. The only difference is
that instead of false, we get characters(start + 5, count - 5). That is, characters doesn’t stop at 5
characters; it goes on forever.

So, let’s solve Exercise 27 by using characters in the contracts:

char getchar(); /*@ requires true; @*/ /*@ ensures true; @*/
void putchar(char c); /*@ requires true; @*/ /*@ ensures true; @*/

/*@
predicate characters(char *start, int count) =

count <= 0 ? true : character(start, _) &*& characters(start + 1, count - 1);
@*/

char *malloc(int count);
//@ requires true;
//@ ensures characters(result, count);

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
if (count > 0) {

char c = getchar();

*start = c;
getchars(start + 1, count - 1);

}
}

void putchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
if (count > 0) {

char c = *start;
putchar(c);
putchars(start + 1, count - 1);

}
}

int main() /*@ requires true; @*/ /*@ ensures true; @*/
{

char *array = malloc(100);
getchars(array, 100);
putchars(array, 100);
putchars(array, 100);
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//@ leak characters(array, 100);
return 0;

}

This doesn’t quite work yet. The problem is that VeriFast does not automatically replace a characters
chunk with its definition, or vice versa. You need to do this explicitly by inserting open and close
ghost commands. For example, when you run VeriFast on the above program, VeriFast complains at the
assignment to *start in function getchars because it cannot find a chunk matching character(start, _).
This chunk is in fact present; it’s just that it is hidden inside the characters chunk. We need to open
up the characters chunk so that VeriFast can see the character chunk that is inside of it. The following
version of function getchars verifies:

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
if (count > 0) {

//@ open characters(start, count);
char c = getchar();

*start = c;
getchars(start + 1, count - 1);
//@ close characters(start, count);

}
}

Inserting the same commands in function putchars yields a correct solution of Exercise 27.

Exercise 28 Implement and verify a simple encryption/decryption program. The program should read
two arrays of 10 characters from standard input. It should then replace each character in the first array
with the XOR of the character and the corresponding character in the second array. Write a recursive
function to do this. It should then write the first array to standard output. The XOR of two characters c1
and c2 can be written in C as (char)(c1 ^ c2).

26 Looping over an Array

The example program of the previous section, that reads a sequence of 100 characters from standard
input and then writes it twice to standard output, is correct. However, it would probably not work if
we attempted to read ten million characters. This is because functions getchars and putchars would in
that scenario perform ten million nested recursive calls. This would most likely exhaust the call stack.9

Therefore, it is safer to rewrite these functions so that they use a loop instead of recursion. Let’s rewrite
function getchars:

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
for (int i = 0; i < count; i++) {

char c = getchar();

*(start + i) = c;
}

}

If we attempt to verify the program now, VeriFast complains that it needs a loop invariant. It needs a loop
invariant so that it can verify the loop body only once, starting from a symbolic state that represents the

9Unless the C compiler performs tail call optimization. But the C standard does not require compilers to do so.

57



start of an arbitrary iteration of the loop. The loop invariant describes this symbolic state. Specifically,
it describes the contents of the symbolic heap, as well as any required information about the value of the
local variables that are modified by the loop. (See Section 8 for more information about loops.)

In the example, at the start of each loop iteration, the symbolic heap contains the characters chunk,
and the value of variable i is nonnegative. We encode this as follows:

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
for (int i = 0; i < count; i++)

//@ invariant characters(start, count) &*& 0 <= i;
{

char c = getchar();

*(start + i) = c;
}

}

VeriFast now complains that it cannot find the permission to write the character at address start + i in
the symbolic heap. This permission is in fact present, but it is hidden inside the characters(start, count)
chunk. In the easy case, it is sufficient to simply open a chunk in order to reveal the permissions that are
hidden inside of it. However, in this case, the permission is hidden below multiple layers of the characters
predicate. In fact, it is hidden below exactly i + 1 layers. It would require i + 1 open operations to reveal
the permission. We cannot write these operations directly in the program text, since we do not know how
many operations to write.

The solution is to first rewrite the characters(start, count) chunk into an equivalent set of chunks
in such a way that the permission that VeriFast is looking for comes to the surface. Notice that the
characters(start, count) chunk describes the same set of memory permissions as the following pair of
chunks:

characters(start, i) &*& characters(start + i, count - i)

If we can rewrite the chunk into this form, we can then simply open the characters(start + i, count - i)
chunk to obtain our character(start + i, _) permission.

We can perform this rewrite by first performing i open operations, to lay bare the first i characters,
and then performing i + 1 close operations, to combine these i characters into a characters(start, i)
chunk. To perform these operations, we can write a helper function. A helper function that serves only
to perform ghost operations is best written as a lemma function. A lemma function is like an ordinary C
function, except that it starts with the lemma keyword and it is written inside an annotation:

/*@
lemma void split_characters_chunk(char *start, int i)

requires characters(start, ?count) &*& 0 <= i &*& i <= count;
ensures characters(start, i) &*& characters(start + i, count - i);

{
if (i == 0) {

close characters(start, 0);
} else {

open characters(start, count);
split_characters_chunk(start + 1, i - 1);
close characters(start, i);

}
}
@*/
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Like an ordinary function, a lemma function has a contract and a body. The contract of the above lemma
function, split_characters_chunk, states that the function requires a single characters chunk, as well as
a value i that lies between zero and count, and gives back two chunks: one that contains the first i
characters, and one that contains the remaining count - i characters.

The function implementation first checks if i equals zero. If it does, the incoming chunk corresponds
exactly to the second chunk that needs to be returned. The function only needs to generate the first
chunk, but since i equals zero, this is an empty chunk and can be created simply by closing it.

In case i is not equal to zero, the function first opens the incoming chunk. This lays bare the first
character (the one at start) as well as the characters chunk that goes from start + 1 to the end. The
function then splits the latter chunk into a part that contains the first i - 1 characters and a part that
contains the remaining count - i characters. This latter chunk is the second chunk that needs to be
returned. Finally, it bundles the character chunk at start up with the characters(start + 1, i - 1)
chunk that was returned by the recursive call, to obtain the first chunk that needs to be returned.

To verify the assignment to *(start + i) in function getchars, we now simply need to call the lemma
function and then open chunk characters(start + i, count - i):

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
for (int i = 0; i < count; i++)

//@ invariant characters(start, count) &*& 0 <= i;
{

char c = getchar();
//@ split_characters_chunk(start, i);
//@ open characters(start + i, count - i);

*(start + i) = c;
}

}

VeriFast now accepts the assignment. It now complains when checking the loop invariant at the end of
the loop body. It complains that it cannot find chunk characters(start, count). Notice that this is again
a matter of rewriting the symbolic heap: all memory permissions described by characters(start, count)
are in fact in the symbolic heap, just not in the packaging in which VeriFast expects them. To satisfy
VeriFast, we need to first close the characters(start + i, count - i) chunk again and then call a lemma
function that merges the characters(start, i) and characters(start + i, count - i) chunks back into
a single characters(start, count) chunk.

Exercise 29 Write the lemma function merge_characters_chunks. Then insert a call to this function
into getchars so that getchars verifies. Then also rewrite putchars to use a loop instead of recursion and
verify the resulting program.

27 Recursive Loop Proofs

An important observation that we can make after the previous section, is that verifying the recursive
version of function getchars is much easier than verifying the version that uses a loop. Indeed, verifying
the loop requires us to maintain a loop invariant which describes all of the permissions (i.e. heap chunks)
used by the loop. In contrast, the contract of a recursive function describes only the permissions used
by a specific call of the function; at the point of a recursive call, if some of the permissions used by the
caller are not required by the callee, then these permissions simply sit in the caller’s symbolic heap for
the duration of the recursive call.

Does this mean that we have to make a choice between run-time performance and verification-time
convenience? Fortunately, we do not! A researcher called Thomas Tuerk recently proposed an approach
for verifying loops that is as convenient as verifying the corresponding recursive function. Specifically,
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Tuerk noticed that any loop can be rewritten into an equivalent recursive function. Consider the following
loop:

while (condition) {
... body ...

}

This loop is equivalent to the call

iter();

where function iter is defined as

void iter() {
if (condition) {

... body ...
iter();

}
}

As a concrete example, consider function getchars from the previous section. If we rewrite the for loop
as a while loop, we get the following code:

void getchars(char *start, int count) {
int i = 0;
while (i < count) {

char c = getchar();

*(start + i) = c;
i++;

}
}

We can now apply the above translation scheme to replace the loop with an equivalent local recursive
function:

void getchars(char *start, int count) {
int i = 0;
void iter() {

if (i < count) {
char c = getchar();

*(start + i) = c;
i++;
iter();

}
}
iter();

}

Note that this translation scheme uses local functions. Standard C does not have local functions, but the
GNU C compiler, gcc, does. gcc compiles and runs the above function correctly.

After noticing that each loop can be rewritten into an equivalent recursive function, Tuerk realized that
this meant that a loop can be verified in the same way that a recursive function is verified: by providing
a contract for the recursive function.

VeriFast supports this approach. When verifying a loop, instead of specifying a loop invariant, you can
specify a loop contract consisting of a precondition and a postcondition. VeriFast will then verify the loop
as if it were written using a local recursive function. To see how this works, let’s first verify the version of
function getchars that uses a local recursive function iter:
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void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
int i = 0;
void iter()

//@ requires characters(start + i, count - i);
//@ ensures characters(start + old_i, count - old_i);

{
if (i < count) {

//@ open characters(start + i, count - i);
char c = getchar();

*(start + i) = c;
i++;
iter();
//@ close characters(start + old_i, count - old_i);

}
}
iter();

}

Notice that we use variable names prefixed by old_ to refer to the value of the variable at the start of the
function call. VeriFast currently does not support local functions, but if it did, this function would verify
successfully.

All that now remains to be done in order to verify the version of getchars that uses a while loop, is
to transplant the annotations that we inserted for the recursive function, back into the loop version:

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
int i = 0;
while (i < count)

//@ requires characters(start + i, count - i);
//@ ensures characters(start + old_i, count - old_i);

{
//@ open characters(start + i, count - i);
char c = getchar();

*(start + i) = c;
i++;
//@ recursive_call();
//@ close characters(start + old_i, count - old_i);

}
}

Notice that we inserted a recursive_call(); ghost statement to indicate where the imaginary recursive
call occurs. VeriFast verifies this function successfully.

Exercise 30 Write a version of function putchars that uses a while loop and verify it using a loop
contract.

Exercise 31 Verify function stack_get_count from Section 11 using a loop contract. You do not need the
lseg predicate or any lemmas for this proof! Note, however, that you will need to rewrite the while loop
into a for (;;) loop (or, equivalently, a while (true) loop) because you need to execute a ghost command
before exiting the loop.
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28 Tracking Array Contents

Suppose we wish to verify functional correctness of the following implementation of the memcpy function,
which copies the contents of one character array into another one.

void memcpy(char *dest, char *src, int count) {
for (int i = 0; i < count; i++) {

dest[i] = src[i];
}

}

To specify functional correctness, the contract for memcpy must express that when the function returns,
the contents of the dest array are equal to the contents of the src array. This means that we cannot
use the characters predicate from the preceding sections, since that predicate specifies only the size of
a character array, and not its contents. We must add a predicate parameter that specifies the list of
characters held by the array:

predicate chars(char *array, int count; list<char> cs) =
count == 0 ?

cs == nil
:

character(array, ?c) &*& chars(array + 1, count - 1, ?cs0) &*& cs == cons(c, cs0);

We can use this predicate to fully specify the behavior of the memcpy function as follows:

void memcpy(char *dest, char *src, int count)
//@ requires chars(dest, count, _) &*& [?f]chars(src, count, ?cs);
//@ ensures chars(dest, count, cs) &*& [f]chars(src, count, cs);

This predicate is in fact the “official” character array predicate in VeriFast: it is declared in prelude.h,
along with a number of useful lemmas, and it is used by VeriFast for certain purposes. For example, the
following function verifies given the above contract for memcpy:

void test()
//@ requires true;
//@ ensures true;

{
char buffer1[7] = "Hello!";
char buffer2[7];
memcpy(buffer2, buffer1, 7);
assert(buffer2[5] == ’!’);

}

Indeed, declaring a local character array causes VeriFast to produce a chars chunk.
Notice the semicolon in the definition of predicate chars: this means it is declared as precise with two

input parameters (array and count) and one output parameter (cs). As explained in Sections 21 and 22, it
follows that VeriFast will merge chars fractions and automatically open and close chars chunks in certain
circumstances.

VeriFast supports array slice syntax to improve the readability of assertions about chars chunks. The
notation a[i..n] |-> ?vs where a is of type char * is equivalent to chars(a + i, n - i, ?vs). Using
array slice syntax, we can write the contract of function memcpy somewhat more readably as follows:

void memcpy(char *dest, char *src, int count)
//@ requires dest[0..count] |-> _ &*& [?f]src[0..count] |-> ?cs;
//@ ensures dest[0..count] |-> cs &*& [f]src[0..count] |-> cs;

We can now verify the implementation. As so often when working with arrays, it pays off to use loop
contracts instead of loop invariants (see Section 27).
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void memcpy(char *dest, char *src, int count)
//@ requires dest[0..count] |-> _ &*& [?f]src[0..count] |-> ?cs;
//@ ensures dest[0..count] |-> cs &*& [f]src[0..count] |-> cs;

{
for (int i = 0; ; i++)

//@ requires dest[i..count] |-> _ &*& [f]src[i..count] |-> ?cs0;
//@ ensures dest[old_i..count] |-> cs0 &*& [f]src[old_i..count] |-> cs0;

{
//@ open chars(dest + i, _, _);
//@ open chars(src + i, _, _);
if (i == count) {

break;
}
dest[i] = src[i];

}
}

Notice that, as usual when using loop contracts, we had to move the loop condition into the loop body so
that we could insert ghost commands before the loop exit (i.e., the break statement).

Exercise 32 Specify and verify that the following implementation of function memcmp returns zero if and
only if the two arrays have the same contents. Note: if a boolean expression in an assertion starts with a
parenthesis, you must prefix the boolean expression with true ==, e.g. true == ((a == b) == (c == d));
this is a limitation of the VeriFast parser.

int memcmp(char *p1, char *p2, int count) {
int result = 0;
for (int i = 0; ; i++) {

if (i == count) {
break;

}
if (p1[i] < p2[i]) {

result = -1; break;
}
if (p1[i] > p2[i]) {

result = 1; break;
}

}
return result;

}

29 Strings

In C programs, strings are conventionally stored in memory as zero-terminated character sequences. For
example, the string "Hello" is stored as ’H’,’e’,’l’, ’l’, ’o’, 0. This means a function that computes
the length of a string could be written as follows:

int strlen(char *s) {
int i = 0;
for (; s[i] != 0; i++);
return i;

}

Here is a simple main program that uses this function:
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int main() {
int n = strlen("Hello, world!");
assert(n == 13);
return 0;

}

How do we verify this function and this main program?
The precondition of function strlen must specify that the caller must supply sufficient permissions to

access all locations starting at address s, up to and including the first location after s whose value is zero.
We could do this using the chars predicate introduced in the previous section, but it is more elegant to
define a new predicate for this specific purpose:

predicate string(char *s; list<char> cs) =
character(s, ?c) &*&
c == 0 ?

cs == nil
:

string(s + 1, ?cs0) &*& cs == cons(c, cs0);

Using this predicate, we can specify function strlen as follows:

int strlen(char *s)
//@ requires string(s, ?cs);
//@ ensures string(s, cs) &*& result == length(cs);

Given this specification, the function is easy to verify.
In fact, the string predicate is the “official” predicate for zero-terminated strings in VeriFast: it is

declared in prelude.h along with a number of useful lemmas, and VeriFast produces a string chunk when
a string literal expression is evaluated.

Let’s now attempt to verify the main program. Unfortunately, this fails. The reason is that the above
precondition of function strlen requires full permission for the string, i.e. permission to read and modify
the string’s characters. However, a C string literal is immutable; the program must not modify it. VeriFast
reflects this by generating only a fractional permission for the string literal (see Section 20).

However, fortunately, function strlen does not actually modify the string that it operates on, so we
can weaken its contract so that it requires only a fractional permission:

int strlen(char *s)
//@ requires [?f]string(s, ?cs);
//@ ensures [f]string(s, cs) &*& result == length(cs);

Exercise 33 Verify function strlen and the main program. Use a loop contract (see Section 27) to verify
the loop. Note that you’ll need to move the loop condition into the body of the loop.

30 Arrays of Pointers

The previous section introduced VeriFast’s support for arrays of characters. Similar support exists for
arrays of unsigned characters, integers, unsigned integers, and pointers. In this section, we will use
VeriFast’s support for arrays of pointers to verify memory safety of a very simple application for keeping
track of the names of students in a class. The following program reads a list of student names, and then
allows the user to look up the name of the kth student in constant time. When the user enters an invalid
student number, the program deallocates all allocated memory and terminates.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
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int read_int() {
int x;
int scanf_result = scanf("%i", &x);
if (scanf_result < 1) abort();
return x;

}

char *read_line() {
char buffer[100];
int scanf_result = scanf(" %99[^\n]", buffer);
if (scanf_result < 1) abort();
char *result = strdup(buffer);
if (result == 0) abort();
return result;

}

int main() {
printf("How many students do you have? ");
int n = read_int();
if (n < 0 || 0x20000000 <= n) abort();
char **names = malloc(n * sizeof(char **));
if (names == 0) abort();
for (int i = 0; i != n; i++) {

printf("Please enter the name of student number %d: ", i + 1);
char *name = read_line();
printf("Adding ’%s’...\n", name);
names[i] = name;

}

for (;;) {
printf("Please enter a student number: ");
int k = read_int();
if (k < 1 || n < k) {

printf("Student number out of range. Terminating...\n");
break;

} else {
char *name = names[k - 1];
printf("Student number %d is called %s.\n", k, name);

}
}

for (int i = 0; i != n; i++) {
free(names[i]);

}
free(names);

return 0;
}

Helper function read_int uses the standard C library function scanf (declared in header file stdio.h) to
read an integer value (in decimal or hexadecimal notation) from standard input and store it in variable
x. Similarly, helper function read_line uses scanf to read a sequence of up to 99 characters that are not
newline characters, i.e., a single line of text of at most 99 characters, and store it in character array buffer
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(allocated on the stack). The return value of scanf indicates the number of items successfully read. Then,
read_line uses library function strdup (from the POSIX standard, declared in header file string.h) to
copy the zero-terminated string in buffer to a newly heap-allocated memory block. strdup returns 0 if
the operation fails due to insufficient memory.

Verification of function read_int is trivial. Verification of function read_line involves one difficulty: af-
ter the scanf call, array buffer is described by a chars chunk, but function strdup requires a string chunk.
Fortunately, we can extract a string chunk out of any character array that contains a zero character using
lemma chars_separate_string declared in prelude.h. Since the array must again be available as a chars
chunk when function read_line returns, we must call the companion lemma chars_unseparate_string
after the strdup call to merge the string chunk back into the chars chunk.

In the main function, verification requires that we annotate each of the three loops. Let’s focus on the
first loop. Since it traverses the names array front to back, we will use a loop contract. The loop requires
access to the array; how do we specify this? How does VeriFast represent the array allocated by the malloc
statement? In fact, if a malloc call is of the form T **x = malloc(n * sizeof(T *)), VeriFast produces a
pointers(x, n, _) chunk. Predicate pointers is defined in prelude.h and is analogous to predicate chars
(see Section 28):

predicate pointers(void **pp, int count; list<void *> ps) =
count == 0 ?

ps == nil
:

pointer(pp, ?p) &*& pointers(pp + 1, count - 1, ?ps0) &*& ps == cons(p, ps0);

Like for chars chunks, VeriFast supports array slice syntax for pointers chunks: the notation a[i..n] |->
?ps where a is of type T ** is equivalent to pointers(a + i, n - i, ?ps). A suitable precondition for the
first loop in function main is therefore as follows:

//@ requires names[i..n] |-> _;

This loop stores in each element of array names a pointer to a heap-allocated memory block containing
a zero-terminated string. The postcondition of the loop should therefore specify not just the array itself
but these memory blocks as well. As discussed in Section 17, we can specify the presence of a chunk for
each element of a list using predicate foreach. A reasonable postcondition for the loop would therefore
be:

//@ ensures names[old_i..n] |-> ?ps &*& foreach(ps, student);

where predicate student is defined as

predicate student(char *name) = string(name, ?cs) &*& malloc_block_chars(name, length(cs) + 1);

(Note: allocating an array a of n characters produces a malloc_block_chars(a, n) chunk; similarly, allo-
cating an array a of n pointers produces a malloc_block_pointers(a, n) chunk.) The above postcondition
would work, but we can reduce the number of open and close statements required to work with these
chunks by using precise variants (see Section 22). We can declare predicate student as precise as follows:

predicate student(char *name;) = string(name, ?cs) &*& malloc_block_chars(name, length(cs) + 1);

VeriFast comes with a ghost header file listex.gh (to be included using a ghost include directive //@
#include <listex.gh>) that declares a precise variant of predicate foreach, called foreachp:

predicate foreachp<t>(list<t> xs, predicate(t;) p;) =
xs == nil ?

emp
:

xs == cons(head(xs), tail(xs)) &*& p(head(xs)) &*& foreachp(tail(xs), p);

Using these precise predicates, we get the following postcondition for the first loop:

//@ ensures names[old_i..n] |-> ?ps &*& foreachp(ps, student);
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The body of the first loop now verifies without any annotations... almost. VeriFast does not realize that
if i == n, then ps == nil. This causes verification of the path that exits the loop to fail. We need to force
a case split by moving the loop condition into the loop body and inserting an open statement at the top
of the body:

for (int i = 0; ; i++)
//@ requires names[i..n] |-> _;
//@ ensures names[old_i..n] |-> ?ps &*& foreachp(ps, student);

{
//@ open pointers(_, _, _);
if (i == n) {

break;
}
printf("Please enter the name of student number %d: ", i + 1);
char *name = read_line();
printf("Adding ’%s’...\n", name);
names[i] = name;

}

The first loop now verifies.
The second loop differs from the first one in that it does not traverse the loop linearly; rather, it

performs random access. Therefore, we use an ordinary loop invariant:

//@ invariant names[0..n] |-> ?ps &*& foreachp(ps, student);

In the first loop, the array element access names[i] caused an auto-open of the pointers(names + i, n - i,
_) chunk, laying bare the pointer(names + i, _) chunk required by the element access (see Section 13). In
the second loop, the names[k - 1] access cannot be verified in this way, since the required pointer chunk
is in the middle of the pointers chunk, rather than in the front; it would require k open operations to lay it
bare, and the auto-open feature cannot handle this. However, the access verifies anyway, because VeriFast
recognizes this access as a random access and treats it specially. In particular, if, when evaluating an array
access of the form a[i], VeriFast finds a chunk pointers(a, n, ps) such that 0 <= i < n, it considers the
access to be valid and returns nth(i, ps) as the result of the access. The fixpoint function nth is declared
in header file list.h; nth(i, ps) returns the i’th element of the list ps.

This deals with the array access itself, but there is another problem: the printf call requires the string
chunk for the string pointed to by element k - 1. This chunk is inside the foreachp chunk. We can extract
it using lemma foreachp_remove_nth declared in ghost header listex.gh:

lemma void foreachp_remove_nth<t>(int n);
requires foreachp<t>(?xs, ?p) &*& 0 <= n &*& n < length(xs);
ensures foreachp<t>(remove_nth(n, xs), p) &*& p(nth(n, xs));

It uses the fixpoint function remove_nth declared in list.h.
Once the student chunk for element k - 1 is available, it is auto-opened and the printf call verifies.

After the printf call, we need to merge the student chunk back into the foreachp chunk using the
companion lemma foreachp_unremove_nth:

lemma void foreachp_unremove_nth<t>(list<t> xs, int n);
requires foreachp<t>(remove_nth(n, xs), ?p) &*& 0 <= n &*& n < length(xs) &*& p(nth(n, xs));
ensures foreachp<t>(xs, p);

These two lemma calls are the only annotations required to verify the body of the second loop.
The third loop again traverses the loop front to back; a loop spec is indicated. Since the loop deallocates

the memory blocks holding the student names, the foreachp chunk disappears from the postcondition:

//@ requires names[i..n] |-> ?ps &*& foreachp(ps, student);
//@ ensures names[old_i..n] |-> _;
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Verifying the body of the loop requires a few annotations. Firstly, on the path that exits the loop, we get
a leak error, again because VeriFast does not realize that i == n means that ps == nil. Like in the first
loop, we need to move the loop condition into the loop body and insert an explicit open of the pointers
chunk.

The second problem is that the free call is not satisfied: a free(a) call where a is of type char * looks
for a malloc_block_chars(a, n) chunk and a chars(a, n, _) chunk. The malloc_block_chars chunk is
available inside the foreachp chunk, but the chars chunk is not; the memory block is instead described
by a string chunk. Therefore, we need to transform the string chunk into a chars chunk. A lemma
string_to_chars is available for this purpose in header prelude.h. We insert a call of this lemma before
the free call.

The third problem is that the string_to_chars call is not satisfied. The string chunk that it looks for
can be obtained by opening the foreachp chunk and then opening the resulting student chunk, but the
auto-open feature does not see this because the student chunk is not statically inside the foreachp chunk;
rather, it is inside the foreachp chunk only if its second argument is the name of the student predicate.
The auto-open feature may support this scenario in the future, but for now we need to explicitly open the
foreachp chunk. The final proof of the third loop looks as follows:

for (int i = 0; ; i++)
//@ requires names[i..n] |-> ?ps &*& foreachp(ps, student);
//@ ensures names[old_i..n] |-> _;

{
//@ open pointers(_, _, _);
if (i == n) {

break;
}
//@ open foreachp(_, _);
//@ string_to_chars(names[i]);
free(names[i]);

}

The program now verifies.

Exercise 34 Verify the program (available as students.c in directory tutorial of the VeriFast distribu-
tion).

31 Solutions to Exercises

31.1 Exercise 1

See Figure 10. Note: there are many alternative ways to express this symbolic execution tree that are
equivalent. In particular, replacing a symbolic state by an equivalent one yields an equivalent symbolic
execution tree. Two symbolic states are equivalent if they denote the same set of concrete states. For
example, if there is only one value v for some symbol ς that satisfies the assumptions, then replacing
any occurrence of ς by v yields an equivalent symbolic state. For another example, if a symbol is not
mentioned by the assumptions, the heap chunks or the local variable bindings, then removing it from the
set of used symbols yields an equivalent symbolic state.

31.2 Exercise 2: account.c

#include "stdlib.h"

struct account {
int balance;
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Symbols:
Assumptions:
Chunks:
Locals:

struct acc *a = malloc(sizeof(struct acc));

S: a, v
A: a 6= 0
C: acc bal(a, v), mb acc(a)
L: a 7→ a

S:
A:
C:
L: a 7→ 0

if (a == 0)

S:
A:
C:
L: a 7→ 0

abort();

if (a == 0) { ... }

S: a, v
A: a 6= 0
C: acc bal(a, v), mb acc(a)
L: a 7→ a

a->bal = 5;

S: a
A: a 6= 0
C: acc bal(a, 5), mb acc(a)
L: a 7→ a

free(a);

S: a
A: a 6= 0
C:
L: a 7→ a

return 0;

S:
A:
C:
L: result 7→ 0

Figure 10: Symbolic execution tree of the program of Figure 1 (after uncommenting the if statement). We
abbreviate Chunks as C, Locals as L, account as acc, balance as bal, myAccount as a, and malloc block
as mb. Note that the tree is shown fully: the malloc node has only two child nodes: the second child node
summarizes (practically) infinitely many corresponding child nodes from the concrete execution tree. We
print symbols in slanted font (a) to avoid confusion with similarly named local variables (a).
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};

struct account *create_account()
//@ requires true;
//@ ensures account_balance(result, 0) &*& malloc_block_account(result);

{
struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }
myAccount->balance = 0;
return myAccount;

}

void account_set_balance(struct account *myAccount, int newBalance)
//@ requires account_balance(myAccount, _);
//@ ensures account_balance(myAccount, newBalance);

{
myAccount->balance = newBalance;

}

void account_dispose(struct account *myAccount)
//@ requires account_balance(myAccount, _) &*& malloc_block_account(myAccount);
//@ ensures true;

{
free(myAccount);

}

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = create_account();
account_set_balance(myAccount, 5);
account_dispose(myAccount);
return 0;

}

31.3 Exercise 3: deposit.c

void account_deposit(struct account *myAccount, int amount)
//@ requires account_balance(myAccount, ?theBalance) &*& 0 <= amount;
//@ ensures account_balance(myAccount, theBalance + amount);

{
myAccount->balance += amount;

}

31.4 Exercise 4: limit.c

#include "stdlib.h"

struct account {
int limit;
int balance;

};
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struct account *create_account(int limit)
//@ requires limit <= 0;
//@ ensures result->limit |-> limit &*& result->balance |-> 0 &*& malloc_block_account(result);

{
struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }
myAccount->limit = limit;
myAccount->balance = 0;
return myAccount;

}

int account_get_balance(struct account *myAccount)
//@ requires myAccount->balance |-> ?theBalance;
//@ ensures myAccount->balance |-> theBalance &*& result == theBalance;

{
return myAccount->balance;

}

void account_deposit(struct account *myAccount, int amount)
//@ requires myAccount->balance |-> ?theBalance;
//@ ensures myAccount->balance |-> theBalance + amount;

{
myAccount->balance += amount;

}

int account_withdraw(struct account *myAccount, int amount)
//@ requires myAccount->limit |-> ?limit &*& myAccount->balance |-> ?balance &*& 0 <= amount;
/*@ ensures myAccount->limit |-> limit &*& myAccount->balance |-> balance - result &*&

result == (balance - amount < limit ? balance - limit : amount); @*/
{

int result = myAccount->balance - amount < myAccount->limit ?
myAccount->balance - myAccount->limit : amount;

myAccount->balance -= result;
return result;

}

void account_dispose(struct account *myAccount)
//@ requires myAccount->limit |-> _ &*& myAccount->balance |-> _ &*& malloc_block_account(myAccount);
//@ ensures true;

{
free(myAccount);

}

31.5 Exercise 5: pred.c

#include "stdlib.h"

struct account {
int limit;
int balance;

};

/*@
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predicate account_pred(struct account *myAccount, int theLimit, int theBalance) =
myAccount->limit |-> theLimit &*& myAccount->balance |-> theBalance
&*& malloc_block_account(myAccount);

@*/

struct account *create_account(int limit)
//@ requires limit <= 0;
//@ ensures account_pred(result, limit, 0);

{
struct account *myAccount = malloc(sizeof(struct account));
if (myAccount == 0) { abort(); }
myAccount->limit = limit;
myAccount->balance = 0;
//@ close account_pred(myAccount, limit, 0);
return myAccount;

}

int account_get_balance(struct account *myAccount)
//@ requires account_pred(myAccount, ?limit, ?balance);
//@ ensures account_pred(myAccount, limit, balance) &*& result == balance;

{
//@ open account_pred(myAccount, limit, balance);
int result = myAccount->balance;
//@ close account_pred(myAccount, limit, balance);
return result;

}

void account_deposit(struct account *myAccount, int amount)
//@ requires account_pred(myAccount, ?limit, ?balance) &*& 0 <= amount;
//@ ensures account_pred(myAccount, limit, balance + amount);

{
//@ open account_pred(myAccount, limit, balance);
myAccount->balance += amount;
//@ close account_pred(myAccount, limit, balance + amount);

}

int account_withdraw(struct account *myAccount, int amount)
//@ requires account_pred(myAccount, ?limit, ?balance) &*& 0 <= amount;
/*@ ensures account_pred(myAccount, limit, balance - result)

&*& result == (balance - amount < limit ? balance - limit : amount); @*/
{

//@ open account_pred(myAccount, limit, balance);
int result = myAccount->balance - amount < myAccount->limit ?

myAccount->balance - myAccount->limit : amount;
myAccount->balance -= result;
//@ close account_pred(myAccount, limit, balance - result);
return result;

}

void account_dispose(struct account *myAccount)
//@ requires account_pred(myAccount, _, _);
//@ ensures true;

{
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//@ open account_pred(myAccount, _, _);
free(myAccount);

}

int main()
//@ requires true;
//@ ensures true;

{
struct account *myAccount = create_account(-100);
account_deposit(myAccount, 200);
int w1 = account_withdraw(myAccount, 50);
assert(w1 == 50);
int b1 = account_get_balance(myAccount);
assert(b1 == 150);
int w2 = account_withdraw(myAccount, 300);
assert(w2 == 250);
int b2 = account_get_balance(myAccount);
assert(b2 == -100);
account_dispose(myAccount);
return 0;

}

31.6 Exercise 6: stack.c

#include "stdlib.h"

struct node {
struct node *next;
int value;

};

struct stack {
struct node *head;

};

/*@

predicate nodes(struct node *node, int count) =
node == 0 ?

count == 0
:

0 < count
&*& node->next |-> ?next &*& node->value |-> ?value
&*& malloc_block_node(node) &*& nodes(next, count - 1);

predicate stack(struct stack *stack, int count) =
stack->head |-> ?head &*& malloc_block_stack(stack) &*& 0 <= count &*& nodes(head, count);

@*/

struct stack *create_stack()
//@ requires true;
//@ ensures stack(result, 0);
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{
struct stack *stack = malloc(sizeof(struct stack));
if (stack == 0) { abort(); }
stack->head = 0;
//@ close nodes(0, 0);
//@ close stack(stack, 0);
return stack;

}

void stack_push(struct stack *stack, int value)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count + 1);

{
//@ open stack(stack, count);
struct node *n = malloc(sizeof(struct node));
if (n == 0) { abort(); }
n->next = stack->head;
n->value = value;
stack->head = n;
//@ close nodes(n, count + 1);
//@ close stack(stack, count + 1);

}

int stack_pop(struct stack *stack)
//@ requires stack(stack, ?count) &*& 0 < count;
//@ ensures stack(stack, count - 1);

{
//@ open stack(stack, count);
struct node *head = stack->head;
//@ open nodes(head, count);
int result = head->value;
stack->head = head->next;
free(head);
//@ close stack(stack, count - 1);
return result;

}

void stack_dispose(struct stack *stack)
//@ requires stack(stack, 0);
//@ ensures true;

{
//@ open stack(stack, 0);
//@ open nodes(_, _);
free(stack);

}

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
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stack_pop(s);
stack_pop(s);
stack_dispose(s);
return 0;

}

31.7 Exercise 7: dispose.c

void nodes_dispose(struct node *n)
//@ requires nodes(n, _);
//@ ensures true;

{
//@ open nodes(n, _);
if (n != 0) {

nodes_dispose(n->next);
free(n);

}
}

void stack_dispose(struct stack *stack)
//@ requires stack(stack, _);
//@ ensures true;

{
//@ open stack(stack, _);
nodes_dispose(stack->head);
free(stack);

}

31.8 Exercise 8: sum.c

int nodes_get_sum(struct node *nodes)
//@ requires nodes(nodes, ?count);
//@ ensures nodes(nodes, count);

{
int result = 0;
//@ open nodes(nodes, count);
if (nodes != 0) {

result = nodes_get_sum(nodes->next);
result += nodes->value;

}
//@ close nodes(nodes, count);
return result;

}

int stack_get_sum(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count);

{
//@ open stack(stack, count);
int result = nodes_get_sum(stack->head);
//@ close stack(stack, count);
return result;

}
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31.9 Exercise 9: popn.c

void stack_popn(struct stack *stack, int n)
//@ requires stack(stack, ?count) &*& 0 <= n &*& n <= count;
//@ ensures stack(stack, count - n);

{
int i = 0;
while (i < n)

//@ invariant stack(stack, count - i) &*& i <= n;
{

stack_pop(stack);
i++;

}
}

31.10 Exercise 10: values.c

#include "stdlib.h"

struct node {
struct node *next;
int value;

};

struct stack {
struct node *head;

};

/*@

inductive ints = ints_nil | ints_cons(int, ints);

predicate nodes(struct node *node, ints values) =
node == 0 ?

values == ints_nil
:

node->next |-> ?next &*& node->value |-> ?value &*& malloc_block_node(node) &*&
nodes(next, ?values0) &*& values == ints_cons(value, values0);

predicate stack(struct stack *stack, ints values) =
stack->head |-> ?head &*& malloc_block_stack(stack) &*& nodes(head, values);

@*/

struct stack *create_stack()
//@ requires true;
//@ ensures stack(result, ints_nil);

{
struct stack *stack = malloc(sizeof(struct stack));
if (stack == 0) { abort(); }
stack->head = 0;
//@ close nodes(0, ints_nil);
//@ close stack(stack, ints_nil);
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return stack;
}

void stack_push(struct stack *stack, int value)
//@ requires stack(stack, ?values);
//@ ensures stack(stack, ints_cons(value, values));

{
//@ open stack(stack, values);
struct node *n = malloc(sizeof(struct node));
if (n == 0) { abort(); }
n->next = stack->head;
n->value = value;
stack->head = n;
//@ close nodes(n, ints_cons(value, values));
//@ close stack(stack, ints_cons(value, values));

}

void stack_dispose(struct stack *stack)
//@ requires stack(stack, ints_nil);
//@ ensures true;

{
//@ open stack(stack, ints_nil);
//@ open nodes(_, _);
free(stack);

}

31.11 Exercise 11: fixpoints.c

int stack_pop(struct stack *stack)
//@ requires stack(stack, ?values) &*& values != ints_nil;
//@ ensures stack(stack, ints_tail(values)) &*& result == ints_head(values);

{
//@ open stack(stack, values);
struct node *head = stack->head;
//@ open nodes(head, values);
int result = head->value;
stack->head = head->next;
free(head);
//@ close stack(stack, ints_tail(values));
return result;

}

31.12 Exercise 12: sum full.c

/*@

fixpoint int ints_sum(ints values) {
switch (values) {

case ints_nil: return 0;
case ints_cons(value, values0): return value + ints_sum(values0);

}
}

@*/
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int nodes_get_sum(struct node *node)
//@ requires nodes(node, ?values);
//@ ensures nodes(node, values) &*& result == ints_sum(values);

{
//@ open nodes(node, values);
int result = 0;
if (node != 0) {

int tailSum = nodes_get_sum(node->next);
result = node->value + tailSum;

}
//@ close nodes(node, values);
return result;

}

int stack_get_sum(struct stack *stack)
//@ requires stack(stack, ?values);
//@ ensures stack(stack, values) &*& result == ints_sum(values);

{
//@ open stack(stack, values);
int result = nodes_get_sum(stack->head);
//@ close stack(stack, values);
return result;

}

31.13 Exercise 13: lemma.c

lemma void lseg_to_nodes_lemma(struct node *first)
requires lseg(first, 0, ?count);
ensures nodes(first, count);

{
open lseg(first, 0, count);
if (first != 0) {

lseg_to_nodes_lemma(first->next);
}
close nodes(first, count);

}

31.14 Exercise 14: push all.c

/*@

lemma void lseg_append_lemma(struct node *first)
requires lseg(first, ?n, ?count) &*& lseg(n, 0, ?count0);
ensures lseg(first, 0, count + count0);

{
open lseg(first, n, count);
if (first != n) {

open lseg(n, 0, count0);
close lseg(n, 0, count0);
lseg_append_lemma(first->next);
close lseg(first, 0, count + count0);

}
}
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@*/

void stack_push_all(struct stack *stack, struct stack *other)
//@ requires stack(stack, ?count) &*& stack(other, ?count0);
//@ ensures stack(stack, count0 + count);

{
//@ open stack(stack, count);
//@ nodes_to_lseg_lemma(stack->head);
//@ open stack(other, count0);
//@ nodes_to_lseg_lemma(other->head);
struct node *head0 = other->head;
free(other);
struct node *n = head0;
//@ open lseg(head0, 0, count0);
if (n != 0) {

//@ close lseg(head0, head0, 0);
while (n->next != 0)

/*@
invariant

lseg(head0, n, ?count1) &*&
n != 0 &*& n->value |-> _ &*& n->next |-> ?next &*& malloc_block_node(n) &*&
lseg(next, 0, count0 - count1 - 1);

@*/
{

n = n->next;
//@ lseg_add_lemma(head0);
//@ open lseg(next, 0, count0 - count1 - 1);

}
//@ open lseg(0, 0, _);
n->next = stack->head;
//@ lseg_add_lemma(head0);
//@ lseg_append_lemma(head0);
stack->head = head0;

}
//@ lseg_to_nodes_lemma(stack->head);
//@ close stack(stack, count0 + count);

}

31.15 Exercise 15: reverse.c

fixpoint ints ints_append(ints values1, ints values2) {
switch (values1) {

case ints_nil: return values2;
case ints_cons(h, t): return ints_cons(h, ints_append(t, values2));

}
}

lemma void ints_append_nil_lemma(ints values)
requires true;
ensures ints_append(values, ints_nil) == values;

{
switch (values) {
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case ints_nil:
case ints_cons(h, t):

ints_append_nil_lemma(t);
}

}

lemma void ints_append_assoc_lemma(ints values1, ints values2, ints values3)
requires true;
ensures

ints_append(ints_append(values1, values2), values3) ==
ints_append(values1, ints_append(values2, values3));

{
switch (values1) {

case ints_nil:
case ints_cons(h, t):

ints_append_assoc_lemma(t, values2, values3);
}

}

fixpoint ints ints_reverse(ints values) {
switch (values) {

case ints_nil: return ints_nil;
case ints_cons(h, t): return ints_append(ints_reverse(t), ints_cons(h, ints_nil));

}
}

@*/

void stack_reverse(struct stack *stack)
//@ requires stack(stack, ?values);
//@ ensures stack(stack, ints_reverse(values));

{
//@ open stack(stack, values);
struct node *n = stack->head;
struct node *m = 0;
//@ close nodes(m, ints_nil);
//@ ints_append_nil_lemma(ints_reverse(values));
while (n != 0)

/*@
invariant

nodes(m, ?values1) &*& nodes(n, ?values2) &*&
ints_reverse(values) == ints_append(ints_reverse(values2), values1);

@*/
{

//@ open nodes(n, values2);
struct node *next = n->next;
//@ assert nodes(next, ?values2tail) &*& n->value |-> ?value;
n->next = m;
m = n;
n = next;
//@ close nodes(m, ints_cons(value, values1));
//@ ints_append_assoc_lemma(ints_reverse(values2tail), ints_cons(value, ints_nil), values1);

}
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//@ open nodes(n, _);
stack->head = m;
//@ close stack(stack, ints_reverse(values));

}

31.16 Exercise 16: filter.c

#include "stdlib.h"

struct node {
struct node *next;
int value;

};

struct stack {
struct node *head;

};

/*@

predicate nodes(struct node *node, int count) =
node == 0 ?

count == 0
:

0 < count &*& node->next |-> ?next &*& node->value |-> ?value &*&
malloc_block_node(node) &*& nodes(next, count - 1);

predicate stack(struct stack *stack, int count) =
stack->head |-> ?head &*& malloc_block_stack(stack) &*& 0 <= count &*& nodes(head, count);

@*/

struct stack *create_stack()
//@ requires true;
//@ ensures stack(result, 0);

{
struct stack *stack = malloc(sizeof(struct stack));
if (stack == 0) { abort(); }
stack->head = 0;
//@ close nodes(0, 0);
//@ close stack(stack, 0);
return stack;

}

void stack_push(struct stack *stack, int value)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count + 1);

{
//@ open stack(stack, count);
struct node *n = malloc(sizeof(struct node));
if (n == 0) { abort(); }
n->next = stack->head;
n->value = value;

81



stack->head = n;
//@ close nodes(n, count + 1);
//@ close stack(stack, count + 1);

}

int stack_pop(struct stack *stack)
//@ requires stack(stack, ?count) &*& 0 < count;
//@ ensures stack(stack, count - 1);

{
//@ open stack(stack, count);
struct node *head = stack->head;
//@ open nodes(head, count);
int result = head->value;
stack->head = head->next;
free(head);
//@ close stack(stack, count - 1);
return result;

}

typedef bool int_predicate(int x);
//@ requires true;
//@ ensures true;

struct node *nodes_filter(struct node *n, int_predicate *p)
//@ requires nodes(n, _) &*& is_int_predicate(p) == true;
//@ ensures nodes(result, _);

{
if (n == 0) {

return 0;
} else {

//@ open nodes(n, _);
bool keep = p(n->value);
if (keep) {

struct node *next = nodes_filter(n->next, p);
//@ open nodes(next, ?count);
//@ close nodes(next, count);
n->next = next;
//@ close nodes(n, count + 1);
return n;

} else {
struct node *next = n->next;
free(n);
struct node *result = nodes_filter(next, p);
return result;

}
}

}

void stack_filter(struct stack *stack, int_predicate *p)
//@ requires stack(stack, _) &*& is_int_predicate(p) == true;
//@ ensures stack(stack, _);

{
//@ open stack(stack, _);

82



struct node *head = nodes_filter(stack->head, p);
//@ assert nodes(head, ?count);
stack->head = head;
//@ open nodes(head, count);
//@ close nodes(head, count);
//@ close stack(stack, count);

}

void nodes_dispose(struct node *n)
//@ requires nodes(n, _);
//@ ensures true;

{
//@ open nodes(n, _);
if (n != 0) {

nodes_dispose(n->next);
free(n);

}
}

void stack_dispose(struct stack *stack)
//@ requires stack(stack, _);
//@ ensures true;

{
//@ open stack(stack, _);
nodes_dispose(stack->head);
free(stack);

}

bool neq_20(int x) //@ : int_predicate
//@ requires true;
//@ ensures true;

{
return x != 20;

}

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
stack_push(s, 10);
stack_push(s, 20);
stack_push(s, 30);
stack_filter(s, neq_20);
stack_dispose(s);
return 0;

}

31.17 Exercise 17: byref.c

void nodes_filter(struct node **n, int_predicate *p)
//@ requires pointer(n, ?node) &*& nodes(node, _) &*& is_int_predicate(p) == true;
//@ ensures pointer(n, ?node0) &*& nodes(node0, _);
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{
if (*n != 0) {

//@ open nodes(node, _);
bool keep = p((*n)->value);
if (keep) {

//@ open node_next(node, _);
nodes_filter(&(*n)->next, p);
//@ assert pointer(&((struct node *)node)->next, ?next) &*& nodes(next, ?count);
//@ close node_next(node, next);
//@ open nodes(next, count);
//@ close nodes(next, count);
//@ close nodes(node, count + 1);

} else {
struct node *next = (*n)->next;
free(*n);

*n = next;
nodes_filter(n, p);

}
}

}

31.18 Exercise 18: map.c

//@ predicate_family int_func_data(void *f)(void *data);

typedef int int_func(void *data, int x);
//@ requires int_func_data(this)(data);
//@ ensures int_func_data(this)(data);

void nodes_map(struct node *n, int_func *f, void *data)
//@ requires nodes(n, ?count) &*& is_int_func(f) == true &*& int_func_data(f)(data);
//@ ensures nodes(n, count) &*& is_int_func(f) == true &*& int_func_data(f)(data);

{
//@ open nodes(n, _);
if (n != 0) {

int y = f(data, n->value);
n->value = y;
nodes_map(n->next, f, data);

}
//@ close nodes(n, count);

}

void stack_map(struct stack *stack, int_func *f, void *data)
//@ requires stack(stack, ?count) &*& is_int_func(f) == true &*& int_func_data(f)(data);
//@ ensures stack(stack, count) &*& is_int_func(f) == true &*& int_func_data(f)(data);

{
//@ open stack(stack, _);
nodes_map(stack->head, f, data);
//@ close stack(stack, count);

}

31.19 Exercise 19: foreach.c

char input_char();
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//@ requires true;
//@ ensures true;

int input_int();
//@ requires true;
//@ ensures true;

void output_int(int x);
//@ requires true;
//@ ensures true;

struct vector {
int x;
int y;

};

//@ predicate vector(struct vector *v) = v->x |-> _ &*& v->y |-> _ &*& malloc_block_vector(v);

struct vector *create_vector(int x, int y)
//@ requires true;
//@ ensures vector(result);

{
struct vector *result = malloc(sizeof(struct vector));
if (result == 0) abort();
result->x = x;
result->y = y;
//@ close vector(result);
return result;

}

int main()
//@ requires true;
//@ ensures true;

{
struct stack *s = create_stack();
//@ close foreach(nil, vector);
while (true)

//@ invariant stack(s, ?values) &*& foreach(values, vector);
{

char c = input_char();
if (c == ’p’) {

int x = input_int();
int y = input_int();
struct vector *v = create_vector(x, y);
stack_push(s, v);
//@ close foreach(cons(v, values), vector);

} else if (c == ’+’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v1 = stack_pop(s);
//@ open foreach(values, vector);
//@ open vector(head(values));
empty = stack_is_empty(s);
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if (empty) abort();
struct vector *v2 = stack_pop(s);
//@ open foreach(tail(values), vector);
//@ open vector(head(tail(values)));
struct vector *sum = create_vector(v1->x + v2->x, v1->y + v2->y);
free(v1);
free(v2);
stack_push(s, sum);
//@ close foreach(cons(sum, tail(tail(values))), vector);

} else if (c == ’=’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v = stack_pop(s);
//@ open foreach(values, vector);
//@ open vector(head(values));
output_int(v->x);
output_int(v->y);
free(v);

} else {
abort();

}
}

}

31.20 Exercise 20: predctors.c

struct vector {
int x;
int y;

};

/*@
predicate_ctor vector(int limit)(struct vector *v) =

v->x |-> ?x &*& v->y |-> ?y &*& malloc_block_vector(v) &*& x * x + y * y <= limit * limit;
@*/

struct vector *create_vector(int limit, int x, int y)
//@ requires true;
//@ ensures vector(limit)(result);

{
if (x * x + y * y > limit * limit) abort();
struct vector *result = malloc(sizeof(struct vector));
if (result == 0) abort();
result->x = x;
result->y = y;
//@ close vector(limit)(result);
return result;

}

int main()
//@ requires true;
//@ ensures true;

{
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int limit = input_int();
struct stack *s = create_stack();
//@ close foreach(nil, vector(limit));
while (true)

//@ invariant stack(s, ?values) &*& foreach(values, vector(limit));
{

char c = input_char();
if (c == ’p’) {

int x = input_int();
int y = input_int();
struct vector *v = create_vector(limit, x, y);
stack_push(s, v);
//@ close foreach(cons(v, values), vector(limit));

} else if (c == ’+’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v1 = stack_pop(s);
//@ open foreach(values, vector(limit));
//@ open vector(limit)(head(values));
empty = stack_is_empty(s);
if (empty) abort();
struct vector *v2 = stack_pop(s);
//@ open foreach(tail(values), vector(limit));
//@ open vector(limit)(head(tail(values)));
struct vector *sum = create_vector(limit, v1->x + v2->x, v1->y + v2->y);
free(v1);
free(v2);
stack_push(s, sum);
//@ close foreach(cons(sum, tail(tail(values))), vector(limit));

} else if (c == ’=’) {
bool empty = stack_is_empty(s);
if (empty) abort();
struct vector *v = stack_pop(s);
//@ open foreach(values, vector(limit));
//@ open vector(limit)(head(values));
int x = v->x;
int y = v->y;
free(v);
assert(x * x + y * y <= limit * limit);
output_int(x);
output_int(y);

} else {
abort();

}
}

}

31.21 Exercise 21: threads0.c

#include "stdlib.h"
#include "malloc.h"

int rand();
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//@ requires true;
//@ ensures true;

int fac(int x)
//@ requires true;
//@ ensures true;

{
int result = 1;
while (x > 1)

//@ invariant true;
{

result = result * x;
x = x - 1;

}
return result;

}

struct tree {
struct tree *left;
struct tree *right;
int value;

};

/*@ predicate tree(struct tree *t, int depth) =
t == 0 ?

depth == 0
:

t->left |-> ?left &*& t->right |-> ?right &*& t->value |-> _ &*& malloc_block_tree(t) &*&
tree(left, depth - 1) &*& tree(right, depth - 1);

@*/

struct tree *make_tree(int depth)
//@ requires true;
//@ ensures tree(result, depth);

{
if (depth == 0) {

//@ close tree(0, 0);
return 0;

} else {
struct tree *left = make_tree(depth - 1);
struct tree *right = make_tree(depth - 1);
int value = rand();
struct tree *t = malloc(sizeof(struct tree));
if (t == 0) abort();
t->left = left;
t->right = right;
t->value = value % 2000;
//@ close tree(t, depth);
return t;

}
}

int tree_compute_sum_facs(struct tree *tree)
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//@ requires tree(tree, ?depth);
//@ ensures tree(tree, depth);

{
if (tree == 0) {

return 1;
} else {

//@ open tree(tree, depth);
int leftSum = tree_compute_sum_facs(tree->left);
int rightSum = tree_compute_sum_facs(tree->right);
int f = fac(tree->value);
return leftSum + rightSum + f;
//@ close tree(tree, depth);

}
}

int main()
//@ requires true;
//@ ensures true;

{
struct tree *tree = make_tree(22);
int sum = tree_compute_sum_facs(tree);
//@ leak tree(tree, _);
return sum;

}

31.22 Exercise 22: threads.c

struct sum_data {
struct thread *thread;
struct tree *tree;
int sum;

};

/*@

predicate_family_instance thread_run_pre(summator)(struct sum_data *data, any info) =
data->tree |-> ?tree &*& tree(tree, _) &*& data->sum |-> _;

predicate_family_instance thread_run_post(summator)(struct sum_data *data, any info) =
data->tree |-> ?tree &*& tree(tree, _) &*& data->sum |-> _;

@*/

void summator(struct sum_data *data) //@ : thread_run_joinable
//@ requires thread_run_pre(summator)(data, ?info);
//@ ensures thread_run_post(summator)(data, info);

{
//@ open thread_run_pre(summator)(data, info);
int sum = tree_compute_sum_facs(data->tree);
data->sum = sum;
//@ close thread_run_post(summator)(data, info);

}

struct sum_data *start_sum_thread(struct tree *tree)
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//@ requires tree(tree, _);
//@ ensures result->thread |-> ?t &*& thread(t, summator, result, _);

{
struct sum_data *data = malloc(sizeof(struct sum_data));
struct thread *t = 0;
if (data == 0) abort();
//@ leak malloc_block_sum_data(data);
data->tree = tree;
//@ close thread_run_pre(summator)(data, unit);
t = thread_start_joinable(summator, data);
data->thread = t;
return data;

}

int join_sum_thread(struct sum_data *data)
//@ requires data->thread |-> ?t &*& thread(t, summator, data, _);
//@ ensures true;

{
thread_join(data->thread);
//@ open thread_run_post(summator)(data, _);
return data->sum;
//@ leak data->tree |-> ?tree &*& tree(tree, _) &*& data->sum |-> _ &*& data->thread |-> _;

}

int main()
//@ requires true;
//@ ensures true;

{
struct tree *tree = make_tree(22);
//@ open tree(tree, _);
struct sum_data *leftData = start_sum_thread(tree->left);
struct sum_data *rightData = start_sum_thread(tree->right);
int sumLeft = join_sum_thread(leftData);
int sumRight = join_sum_thread(rightData);
int f = fac(tree->value);
//@ leak tree->left |-> _ &*& tree->right |-> _ &*& tree->value |-> _ &*& malloc_block_tree(tree);
return sumLeft + sumRight + f;

}

31.23 Exercise 23: fractions0.c

typedef int fold_function(int acc, int x);
//@ requires true;
//@ ensures true;

int tree_fold(struct tree *tree, fold_function *f, int acc)
//@ requires tree(tree, ?depth) &*& is_fold_function(f) == true;
//@ ensures tree(tree, depth);

{
if (tree == 0) {

return acc;
} else {

//@ open tree(tree, depth);
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acc = tree_fold(tree->left, f, acc);
acc = tree_fold(tree->right, f, acc);
acc = f(acc, tree->value);
return acc;
//@ close tree(tree, depth);

}
}

struct fold_data {
struct thread *thread;
struct tree *tree;
fold_function *f;
int acc;

};

/*@

predicate_family_instance thread_run_pre(folder)(struct fold_data *data, any info) =
data->tree |-> ?tree &*& tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;

predicate_family_instance thread_run_post(folder)(struct fold_data *data, any info) =
data->tree |-> ?tree &*& tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;

@*/

void folder(struct fold_data *data) //@ : thread_run_joinable
//@ requires thread_run_pre(folder)(data, ?info);
//@ ensures thread_run_post(folder)(data, info);

{
//@ open thread_run_pre(folder)(data, info);
int acc = tree_fold(data->tree, data->f, data->acc);
data->acc = acc;
//@ close thread_run_post(folder)(data, info);

}

struct fold_data *start_fold_thread(struct tree *tree, fold_function *f, int acc)
//@ requires tree(tree, _) &*& is_fold_function(f) == true;
//@ ensures result->thread |-> ?t &*& thread(t, folder, result, _);

{
struct fold_data *data = malloc(sizeof(struct fold_data));
struct thread *t = 0;
if (data == 0) abort();
//@ leak malloc_block_fold_data(data);
data->tree = tree;
data->f = f;
data->acc = acc;
//@ close thread_run_pre(folder)(data, unit);
t = thread_start_joinable(folder, data);
data->thread = t;
return data;

}
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int join_fold_thread(struct fold_data *data)
//@ requires data->thread |-> ?t &*& thread(t, folder, data, _);
//@ ensures true;

{
thread_join(data->thread);
//@ open thread_run_post(folder)(data, _);
return data->acc;
//@ leak data->tree |-> ?tree &*& [_]tree(tree, _);
//@ leak data->f |-> _ &*& data->acc |-> _ &*& data->thread |-> _;

}

int sum_function(int acc, int x) //@ : fold_function
//@ requires true;
//@ ensures true;

{
int f = fac(x);
return acc + f;

}

int product_function(int acc, int x) //@ : fold_function
//@ requires true;
//@ ensures true;

{
int f = fac(x);
return acc * f;

}

int main()
//@ requires true;
//@ ensures true;

{
struct tree *tree = make_tree(22);
//@ open tree(tree, _);
struct fold_data *leftData = start_fold_thread(tree->left, sum_function, 0);
struct fold_data *rightData = start_fold_thread(tree->right, sum_function, 0);
int sumLeft = join_fold_thread(leftData);
int sumRight = join_fold_thread(rightData);
int f = fac(tree->value);
//@ leak tree->left |-> _ &*& tree->right |-> _ &*& tree->value |-> _ &*& malloc_block_tree(tree);
return sumLeft + sumRight + f;

}

31.24 Exercise 24: fractions.c

/*@

predicate_family_instance thread_run_pre(folder)(struct fold_data *data, any info) =
data->tree |-> ?tree &*& [1/2]tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;

predicate_family_instance thread_run_post(folder)(struct fold_data *data, any info) =
data->tree |-> ?tree &*& [1/2]tree(tree, _) &*&
data->f |-> ?f &*& is_fold_function(f) == true &*& data->acc |-> _;
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@*/

void folder(struct fold_data *data) //@ : thread_run_joinable
//@ requires thread_run_pre(folder)(data, ?info);
//@ ensures thread_run_post(folder)(data, info);

{
//@ open thread_run_pre(folder)(data, info);
int acc = tree_fold(data->tree, data->f, data->acc);
data->acc = acc;
//@ close thread_run_post(folder)(data, info);

}

struct fold_data *start_fold_thread(struct tree *tree, fold_function *f, int acc)
//@ requires [1/2]tree(tree, _) &*& is_fold_function(f) == true;
//@ ensures result->thread |-> ?t &*& thread(t, folder, result, _);

{
struct fold_data *data = malloc(sizeof(struct fold_data));
struct thread *t = 0;
if (data == 0) abort();
//@ leak malloc_block_fold_data(data);
data->tree = tree;
data->f = f;
data->acc = acc;
//@ close thread_run_pre(folder)(data, unit);
t = thread_start_joinable(folder, data);
data->thread = t;
return data;

}

int join_fold_thread(struct fold_data *data)
//@ requires data->thread |-> ?t &*& thread(t, folder, data, _);
//@ ensures true;

{
thread_join(data->thread);
//@ open thread_run_post(folder)(data, _);
return data->acc;
//@ leak data->tree |-> ?tree &*& [_]tree(tree, _);
//@ leak data->f |-> _ &*& data->acc |-> _ &*& data->thread |-> _;

}

31.25 Exercise 25: mutexes.c

#include "stdlib.h"
#include "threading.h"

void wait_for_pulse(int source);
//@ requires true;
//@ ensures true;

void sleep(int millis);
//@ requires true;
//@ ensures true;
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void print_int(int n);
//@ requires true;
//@ ensures true;

struct counter {
int count;
struct mutex *mutex;

};

//@ predicate_ctor counter(struct counter *counter)() = counter->count |-> _;

struct count_pulses_data {
struct counter *counter;
int source;

};

/*@

predicate_family_instance thread_run_data(count_pulses)(struct count_pulses_data *data) =
data->counter |-> ?counter &*& data->source |-> _ &*& malloc_block_count_pulses_data(data) &*&
[1/2]counter->mutex |-> ?mutex &*& [1/3]mutex(mutex, counter(counter));

@*/

void count_pulses(struct count_pulses_data *data) //@ : thread_run
//@ requires thread_run_data(count_pulses)(data);
//@ ensures true;

{
//@ open thread_run_data(count_pulses)(data);
struct counter *counter = data->counter;
int source = data->source;
free(data);

struct mutex *mutex = counter->mutex;

while (true)
//@ invariant [1/3]mutex(mutex, counter(counter));

{
wait_for_pulse(source);
mutex_acquire(mutex);
//@ open counter(counter)();
counter->count++;
//@ close counter(counter)();
mutex_release(mutex);

}
}

void count_pulses_async(struct counter *counter, int source)
//@ requires [1/2]counter->mutex |-> ?mutex &*& [1/3]mutex(mutex, counter(counter));
//@ ensures true;

{
struct count_pulses_data *data = malloc(sizeof(struct count_pulses_data));
if (data == 0) abort();
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data->counter = counter;
data->source = source;
//@ close thread_run_data(count_pulses)(data);
thread_start(count_pulses, data);

}

int main() //@ : main
//@ requires true;
//@ ensures true;

{
struct counter *counter = malloc(sizeof(struct counter));
if (counter == 0) abort();
counter->count = 0;
//@ close counter(counter)();
//@ close create_mutex_ghost_arg(counter(counter));
struct mutex *mutex = create_mutex();
counter->mutex = mutex;

count_pulses_async(counter, 1);
count_pulses_async(counter, 2);

while (true)
//@ invariant [1/3]mutex(mutex, counter(counter));

{
sleep(1000);
mutex_acquire(mutex);
//@ open counter(counter)();
print_int(counter->count);
//@ close counter(counter)();
mutex_release(mutex);

}
}

31.26 Exercise 26: leaks.c

#include "stdlib.h"
#include "threading.h"

int wait_for_source();
//@ requires true;
//@ ensures true;

bool wait_for_pulse(int source); // true means the sensor has been removed.
//@ requires true;
//@ ensures true;

void sleep(int millis);
//@ requires true;
//@ ensures true;

void print_int(int n);
//@ requires true;
//@ ensures true;
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struct counter {
int count;
struct mutex *mutex;

};

//@ predicate_ctor counter(struct counter *counter)() = counter->count |-> _;

struct count_pulses_data {
struct counter *counter;
int source;

};

/*@

predicate_family_instance thread_run_data(count_pulses)(struct count_pulses_data *data) =
data->counter |-> ?counter &*& data->source |-> _ &*& malloc_block_count_pulses_data(data) &*&
[_]counter->mutex |-> ?mutex &*& [_]mutex(mutex, counter(counter));

@*/

void count_pulses(struct count_pulses_data *data) //@ : thread_run
//@ requires thread_run_data(count_pulses)(data);
//@ ensures true;

{
//@ open thread_run_data(count_pulses)(data);
struct counter *counter = data->counter;
int source = data->source;
free(data);

struct mutex *mutex = counter->mutex;
bool done = false;
while (!done)

//@ invariant [_]mutex(mutex, counter(counter));
{

done = wait_for_pulse(source);
if (!done) {

mutex_acquire(mutex);
//@ open counter(counter)();
counter->count++;
//@ close counter(counter)();
mutex_release(mutex);

}
}

}

void count_pulses_async(struct counter *counter, int source)
//@ requires [_]counter->mutex |-> ?mutex &*& [_]mutex(mutex, counter(counter));
//@ ensures true;

{
struct count_pulses_data *data = malloc(sizeof(struct count_pulses_data));
if (data == 0) abort();
data->counter = counter;
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data->source = source;
//@ close thread_run_data(count_pulses)(data);
thread_start(count_pulses, data);

}

/*@

predicate_family_instance thread_run_data(print_count)(struct counter *counter) =
[_]counter->mutex |-> ?mutex &*& [_]mutex(mutex, counter(counter));

@*/

void print_count(struct counter *counter) //@ : thread_run
//@ requires thread_run_data(print_count)(counter);
//@ ensures true;

{
//@ open thread_run_data(print_count)(counter);
struct mutex *mutex = counter->mutex;
while (true)

//@ invariant [_]mutex(mutex, counter(counter));
{

sleep(1000);
mutex_acquire(mutex);
//@ open counter(counter)();
print_int(counter->count);
//@ close counter(counter)();
mutex_release(mutex);

}
}

int main() //@ : main
//@ requires true;
//@ ensures true;

{
struct counter *counter = malloc(sizeof(struct counter));
if (counter == 0) abort();
counter->count = 0;
//@ close counter(counter)();
//@ close create_mutex_ghost_arg(counter(counter));
struct mutex *mutex = create_mutex();
counter->mutex = mutex;
//@ leak counter->mutex |-> mutex &*& mutex(mutex, _);

//@ close thread_run_data(print_count)(counter);
thread_start(print_count, counter);

while (true)
//@ invariant [_]counter->mutex |-> mutex &*& [_]mutex(mutex, counter(counter));

{
int source = wait_for_source();
count_pulses_async(counter, source);

}
}
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31.27 Exercise 27: characters.c

The solution is given in the text of Section 25.

31.28 Exercise 28: xor.c

char getchar(); /*@ requires true; *@/ /*@ ensures true; @*/
void putchar(char c); /*@ requires true; *@/ /*@ ensures true; @*/

/*@
predicate characters(char *start, int count) =

count <= 0 ? true : character(start, _) &*& characters(start + 1, count - 1);
@*/

char *malloc(int count);
//@ requires true;
//@ ensures characters(result, count);

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
if (count > 0) {

//@ open characters(start, count);
char c = getchar();

*start = c;
getchars(start + 1, count - 1);
//@ close characters(start, count);

}
}

void xorchars(char *text, char *key, int count)
//@ requires characters(text, count) &*& characters(key, count);
//@ ensures characters(text, count) &*& characters(key, count);

{
if (count > 0) {

//@ open characters(text, count);
//@ open characters(key, count);

*text = (char)(*text ^ *key);
xorchars(text + 1, key + 1, count - 1);
//@ close characters(text, count);
//@ close characters(key, count);

}
}

void putchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
if (count > 0) {

//@ open characters(start, count);
char c = *start;
putchar(c);
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putchars(start + 1, count - 1);
//@ close characters(start, count);

}
}

int main() /*@ requires true; @*/ /*@ ensures true; @*/
{

char *text = malloc(10);
char *key = malloc(10);
getchars(text, 10);
getchars(key, 10);
xorchars(text, key, 10);
putchars(text, 10);
//@ leak characters(text, 10) &*& characters(key, 10);
return 0;

}

31.29 Exercise 29: characters loop.c

char getchar(); /*@ requires true; *@/ /*@ ensures true; @*/
void putchar(char c); /*@ requires true; *@/ /*@ ensures true; @*/

/*@
predicate characters(char *start, int count) =

count <= 0 ? true : character(start, _) &*& characters(start + 1, count - 1);
@*/

char *malloc(int count);
//@ requires true;
//@ ensures characters(result, count);

/*@

lemma void split_characters_chunk(char *start, int i)
requires characters(start, ?count) &*& 0 <= i &*& i <= count;
ensures characters(start, i) &*& characters(start + i, count - i);

{
if (i == 0) {

close characters(start, 0);
} else {

open characters(start, count);
split_characters_chunk(start + 1, i - 1);
close characters(start, i);

}
}

lemma void merge_characters_chunk(char *start)
requires characters(start, ?i) &*& characters(start + i, ?count) &*& 0 <= i &*& 0 <= count;
ensures characters(start, i + count);

{
open characters(start, i);
if (i != 0) {

merge_characters_chunk(start + 1);
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close characters(start, i + count);
}

}

@*/

void getchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
for (int i = 0; i < count; i++)

//@ invariant characters(start, count) &*& 0 <= i;
{

char c = getchar();
//@ split_characters_chunk(start, i);
//@ open characters(start + i, count - i);

*(start + i) = c;
//@ close characters(start + i, count - i);
//@ merge_characters_chunk(start);

}
}

void putchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);

{
for (int i = 0; i < count; i++)

//@ invariant characters(start, count) &*& 0 <= i;
{

//@ split_characters_chunk(start, i);
//@ open characters(start + i, count - i);
char c = *(start + i);
//@ close characters(start + i, count - i);
//@ merge_characters_chunk(start);
putchar(c);

}
}

int main() /*@ requires true; @*/ /*@ ensures true; @*/
{

char *array = malloc(100);
getchars(array, 100);
putchars(array, 100);
putchars(array, 100);
//@ leak characters(array, 100);
return 0;

}

31.30 Exercise 30: tuerk.c

void putchars(char *start, int count)
//@ requires characters(start, count);
//@ ensures characters(start, count);
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{
int i = 0;
while (i < count)

//@ requires characters(start + i, count - i);
//@ ensures characters(start + old_i, count - old_i);

{
//@ open characters(start + i, count - i);
putchar(*(start + i));
i++;
//@ recursive_call();
//@ close characters(start + old_i, count - old_i);

}
}

31.31 Exercise 31: stack tuerk.c

int stack_get_count(struct stack *stack)
//@ requires stack(stack, ?count);
//@ ensures stack(stack, count) &*& result == count;

{
//@ open stack(stack, count);
struct node *n = stack->head;
int i = 0;
for (;;)

//@ requires nodes(n, ?count1);
//@ ensures nodes(old_n, count1) &*& i == old_i + count1;

{
//@ open nodes(n, count1);
if (n == 0) {

//@ close nodes(n, count1);
break;

}
n = n->next;
i++;
//@ recursive_call();
//@ close nodes(old_n, count1);

}
//@ close stack(stack, count);
return i;

}

31.32 Exercise 32: memcmp.c

int memcmp(char *p1, char *p2, int count)
//@ requires [?f1]p1[0..count] |-> ?cs1 &*& [?f2]p2[0..count] |-> ?cs2;
/*@
ensures

[f1]p1[0..count] |-> cs1 &*& [f2]p2[0..count] |-> cs2 &*&
true == ((result == 0) == (cs1 == cs2));

@*/
{

int result = 0;
for (int i = 0; ; i++)

//@ requires [f1]p1[i..count] |-> ?xs1 &*& [f2]p2[i..count] |-> ?xs2 &*& result == 0;
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/*@
ensures

[f1]p1[old_i..count] |-> xs1 &*& [f2]p2[old_i..count] |-> xs2 &*&
true == ((result == 0) == (xs1 == xs2));

@*/
{

//@ open chars(p1 + i, _, _);
//@ open chars(p2 + i, _, _);
if (i == count) {

break;
}
if (p1[i] < p2[i]) {

result = -1; break;
}
if (p1[i] > p2[i]) {

result = 1; break;
}

}
return result;

}

31.33 Exercise 33: strlen.c

int strlen(char *s)
//@ requires [?f]string(s, ?cs);
//@ ensures [f]string(s, cs) &*& result == length(cs);

{
int i = 0;
for (;; i++)

//@ requires [f]string(s + i, ?cs1);
//@ ensures [f]string(s + old_i, cs1) &*& i == old_i + length(cs1);

{
//@ open [f]string(s + i, cs1);
if (s[i] == 0) {

break;
}

}
return i;

}

int main()
//@ requires true;
//@ ensures true;

{
int n = strlen("Hello, world!");
assert(n == 13);
return 0;

}
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