

Documentatie over modules in
BIM~proleg

by
Bart DEMOEN *

Technical Memorandum
BIM-prolog TM9

June 1985

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. 432 2 759 59 25

** Katholieke Universiteit Leuven
Department of Camputer Science
Celestijnenlaan 200A
B-3030@ Heverlee Belgium
tel. +32 16 20 @6 56

DPWB = Diensten van de eerste minister : Programmatie van -
het Wetenschapsbeleid.

SPPS = Services du premier ministre : Programmation de la
Politique Scientifique.

LOCWMENTATION ON MCDULES IN BIM-PROLOG

DEMCEN Bart

BInM
Kwikstraat 4
B-3078 Everberg

Report
BIM-prolog 1GMe
June 125

This paper concerns the nature and use of Blivprolog mcdules.
Initially an overview is given, followed by details, such as a discussion of
the interaction between mcdules and other directives concerned with operators,

dynamic code, data bases etc. The influence of modules on certain built-in
predicates is also discussed. The discussion is illustrated with examples.

Note that it is quite possible to program without modules, and that

programs already written without the use of modules will remain executuble
without adjustment.

1 Overview

This overview discusses using mcdules, only within the context of
BIMprolog programs (stored on file), which are to be compiled and consulted.
The use of modules in an interactive session is discussed later.

Modules are to be used as a tool in the development of large BlMprolog
programs.

A mcdule is a set of clauses, to which a module name is given. This name
can be given explicitly to a module, using the directive :

: - module(name) .
A module to which no explicit name has been given has the empty
string as its name. A module without a name is called the global mcdule,

for reasons which will appear later. This directive can only appear once in a file.

Definitions within a module are usually local to that mcdule, i.e. the

rredicate which is defined cannot be called from another module. liowever,
this default can be overruled using the directives :

:- import a/3 fram modulel .
or :— global b/2 .

The first directive occurs in a medule (e.g. module2) in which you want to
use a/3 from modulel, and causes each call fram medule? of &/3, to be
interpreted as a czll fram the predicate with name a, arity 3, and defined
in modulel.

The second directive can pe written in the module containing the definition
of the predicate b/2, and has the effect that each module can call b/2,
without having to use an explicit import declaration for b/2.
It is as thouwh a global declaration is given, for all the built-in predicatcs.
In fact, builtins written in EIMprolog are defined in a module with name system
and are made glocbal.

Definitions inside a module without a name are global. Thus a module
without a name is called the global mcdule.

In order to avoid such a global declaration, (e.g. by redefining a
built-in predicate, local to a module), the following declaration can be
used :

:- local write/1 .

which permits definitions of write/l1 to be written in the (ron global) module.
The presence of write/l, then refers to the local definition.

The directive :
:— export c/4 .

is used to make the predicate c¢/4 availsble for mcdules vhich want to import
it. The export directive also allows checking vhether all imported predicates
were intended to be imported. However, these checks have not yet been

implemented, so that an export declaration is treated as a local declaration.

Thus far, discussion has been restricted to predicates, i.e. functors
for which a definition exists, or for which a call exists. The above is also
true for other functors and atams, an atam being simply a functor of arity £.
In this way, not only can procedures be local, global, imported or exported,
but data structures as well.

This encourages the use of "information hiding", which is associated
with the use of modules. Each functor thus has a module qualification.

There is, however, an important difference between the defaults for

redicates with a definition and for functors without a definition. This
will be discussed in detail later. Simple rules exist which can be used to
decide to which meodule a functor belongs.

It is possible to import the same functor, fram 2 different mcdules.
e.g. import a/3 fram modulel, and fram mcdule? :

Declare -
:— import a/3 from modulel .
:~ import a/3 from mcdule2 .

in vhich case, a call such as a{_x,[],_y) is ambiguwus. This ambiguity can
be removed by using syntactic sugar.

If a/2 fram modulel is intended, write -
asmodulel (x,[1, y)

and correspondingly for mcdule2. The syntactic sugar may only be used in the
case of ambiguity. 2Any other use results in a campiler error. The syntactic
sugar gives an explicit qualification to a functor.

Syntactic sugar extends the syntax given in section 3.
Note, there should be no space between the name of the functor and the
$, nor between the $ and the name of the module.
%$/ is an atam without qualification, equivalent to '%$/°
To denote % with module qualification / , you must write '%'S'/’

2 Defaults

The following method can be used to decide which module a functor
belongs to. This is done initially in the case of non ambiguity.

If a/3 is found in modulel, without explicit module qualification,
it belogs to :

the glcobal module, if a directive :- global a/3 exists at
modulel if a directive :— local a/3 exists
module2 if a directive :- import a/3 fram module2 exists

modulel if modulel contains a procedure definition of a/3

the global module in the other cases

In the case of ambiguity, with explicit module qualification, the
explicit gualification is accepted.

In the case of ambiguity, and without explicit mocdule qualification,
the functor is considered local to the module if there is a sensible local
interpretation, e.g. there is a definition or a dynamic declaration ...)

In all other cases, the mcdule conventions have been viclated, and the
canpiler willemit the appropriate error message.

3 Interactive Mode

In interactive mode, more freedam is given than vhen a file is to be
canpiled. For example, explicit module qualification is alloved at all times. Wien a
BIprolog session starts (in the global module), none of the import, export,
local or global declarations appearing in the consulted files have effect.
If a predicate 1s loaded with name a and arity 4 and local to module modA,
it will not be callable , unless the syntactic sugar is used or unless one is
positioned within modA (using module/1).

Positioning within module modA is done with the query:
?- nodule{mcda) .
The predicate a/4 fram modh is now accessible without explicit

qualification. Typing in new definitions, will cause them to be added to the
current module. See the script of a session in the examples below.

4 Interaction with other directives

The directives op, dynamic, alldynamic, extern etc.
influence the module qualification of functors.

: = extern(address, 3,testdb) .
causes address/3 to be interpreted as a global functor. SR W
: - op(108, £x,x) . defines the functor x/1 global provided that no
other declarations for x/1 were given previously.
If the same declaration is preceded by :~ module(mcdA) .

and :— local(x/1) .

then a local operator has been defined.
If the declaration was preceded by
:= import x/1 from modB .

then the functor x/1 fram modB, has been made an operator in the file.
ynanic deglaration i : dicates vhich are defined
in the BamaVET JeEREFATLON 18 S0ty Mgeint LRt Fredicates which aye defin

4

and a local predicate. For exemple :

: = nodule(me)

:- dynamic a/4 .
:— global(b/2) .
:— dynamic b/2 .

make a/4 a local dynamic predicate, and b/2 a global dynamic predicate.

In the case of ambiguity, the explicit qualification should be used. For example :

;- module(one) .
:- local(a/3) .
:— import a/3 fram two .
:— amnamic a/3 . {There is a possible local interpretation for a/3,
so there is no need for the explicit qualification .}

1=~ dynamic a$two/3 .

: - op{109, fx ,aSane) .

{2 definitions of the local a/3}

al(_x,_y,_z) :-write(£(_x,_y,_2z)) , astwo(_x, vy, 2z) , ! .

a(_x,_x,_y) := al_y,_vy,_x) . {a call of the local a/3}.

In this way, it is perfectly possible to write programs that are difficult
to understand. Be warned!

:= alldynamic .

This causes every procedure in the file to be considered as a dynamic
procedure. However, since the name/arity of the following definitions is not
explicitly mentioned in this declaration, it is not equivalent to a dynamic
declaration of all procedures defined in the module.

Compare

1= module(one) .
:— alldynamic .
:~ import a/l fram two .

proc :- a(hello) . {Refers to o/l fram mcdule two.}
a(_x) :=write(_x) . {Local dynamic definition of a/l}

:= medule(one) .
:— dynamic a/l .
:— import a/l fraom two .

proc :- a{hello) . {Refers to a/l fram mcdule onel
a(_x) :~write(x) . {Local dynamic definition of a/1}

5 Extra bullt-ins

module/1

module/2

module/3

argl : in or output : Current module. (Mist be an atam)

If instantiated, the current mcdule becanes argl.

If free, argl will be instantiated to the name of the
current module.(See- examples)

argl : input : Term.

arg2 : input or output : Module name.

Unify arg2 with the module qualification name of the
principal functor of argl. (argl may not be a free
variable nor a numker).

Example: ?- module(a$one(_x),_y) , write(_y)

outputs one

argl : in or output : Term.
arg2 : input or output : Module name.
arg3 : output : Term.

arg3 is the term constructed fram argl by stripping the

module qualification fram the principal functor of
argl, and wnifying this qualification with arg2.

If argl is free, arg2 must be an atam and arg3 must be
partially instantiated.

Example: ?- nodule(a$me(bStwo) ,one,a{bStwo)) .

succeeds, if inside the global module.

mod_unif/2 argl : input : Term.
arg?2 : input : Termm.

Unify the 2 arguments, as if they had no mcdule
qualification.

Example:

?- mod wmif(afone(_x),astwo(b$three)) ,
module(_x, y) , write(_x) , nl , writeg(_y) .

outputs: b
e
mlisting/1 argl : input : Module name. (Mist be an atam).
Write all predicate definitions, that are local to the

module whose name is argl, on the current output stream.

6 Interaction with other built-in predicates

functor/3 Output arguments are always global.

all directives/g
all_directives/ 1 Declarations concerning modules are not output.

readc/0
readc/1
read/d
read/1 Read global characters and terms.

write/1
write/2
writeg/1
writeqg/2
display/1

display/2
listing/@
listing/1
flisting/1
flisting/2
mlisting/1

is/2

ascii/2
atomtolist/2
nane,/ 2

assert/1
assert/2
asserta/l
assertz/1
clause/2
clause/3
retract/1
retract/2
retractall/l

nunbervars/3

Write terms without qualification. (In a later release,
output predicates that write with qualifications will
be added)

All atams that are created by these predicates are
global. The gualification of the instantiated atams at
the manent of the call, does not influence the working
of the predicates.

The qualification of the terms is important.

The variables are instantiated to global atams.

In the interactive sessicns below, a number has been added to each
prampt, to simplify explanation.

Example 1

Script started on ¥Wed Jun 19 17:29:46 1985

iris% BIMprolog
BIMMODULE Prolog

- release 9.7 5-6-1985

1> ?2- module(x) , writeg(x) , nl .
, — -

2> aSmodA(_x) :- write('wall of a$modn/l1 ') , write(_x) .

3> a :- write('call of a global a/8 ') , write(_x) .

4> ?2- a .

call of a glcbal a/3 @

5> ?- aSnocdA({hello) .

call of aSmodd/1 hello

6> ?2- a(hello) .

***% RUNTIME 220 *** Illegal call : unknown procedure a/l.

7> ?2- module(nodad) .

8> ?- medule(_x) , writeg(_x) , nl .
modA

9> ?2- a(lhello)

call of aSmcdn/1l hello

16> 2- a .

call of a global a/0 O

11> a(_x) :- write('definition added to aSrmoda/1')

12> ?2- a('hello ') .
call of aSmodA/1 hello definition added to a$modd/1
13> b :- write(pok)

pok
15> ?2— module('') .

16> 2- b .
*%% RUNTIME 220 *** Illegal call : unknown procediure b/0.

17> ?- mlisting(moda) .
a(_x) :-
write('call of a$mcda/1 '),
write(x).
a(_) -
write('definition added to aSmoda/l').
b:-
write(pok).

18> ?- stop . 7

_script done on VWed Jun 19 17:33:13 1985

1l: Start of the session. The current module is '' i.e. the glcbhal module.
2: A definition of a/l belonging to modA.

3: A global definition of a/f

- 10 -

6: a/l has no possible global interpretation, resulting in a warning.
7: Set the current module to modA.

8: Check whether the module is really ncodA.

9: a/l has a local interpretation. It is executed.

10: a/0 has no local interpretation. It does have a glcbal interpretation,
so the global is called.

11: The definition is added to aSmodrn/l
13: The first definition of bSmcdiy/C

15: Reset the current moduie to global.
16: b/¥ is not known to the global mcodule.

17: Print the predicates belonging to mcdule mcdA.

anich BrbiZEHNOF: 7 PRPERAY, PR GRa g s 9iven, then a short session. in

Note the warning at line 2. Without the declaration at line 2, a redefinition
of writeg/l1 would be forbidden.

Listing for file modl.pro

:— module(mne) .
:— local writeg/l .
*hk WARNING 15 *** Local redefinition of a builtin predicate

[N N

3 :- global (test / 1) .
4 :- local yes/0 .
5
6 writeq(_x) :- write(/*) , write(_x) , write(*/) , nl .
5
8 test(good) :- read(_y) , mad wmif(_y,yes)
S test(bad) .
19
11 loctest(good) :- read(y) , y=vyes , ! .
12 loctest(bad) .
Total nunker of errors G

Total number of warnings 1

- 11 -

Campilation campleted succesfully

Script started on Wed Jun 19 22:03:21 1985
iris® BIMprolog modl.pro

BIMprolog - release .7 5-6-1985

modl .pro consulted.

1> 2- writeg(klabla) .
blabla
2> 2- test(_x) , write{ x)

@ yes .

good

3> ?- loctest(_x) , write(x)

*%% RUNTIME 220 *** Illegal call : unknown procedure loctest/1.
4> - module{one) .

5> 2= writeq(blabla)
/*blabla*/

6> ?- test(_x) , write(x) .

@ yes .

good

7> ?2- loctest(_x) , write(_x) .
@ yes .

bad

8> ?2- stop .

irisg °

script done on Wed Jun 19 22:£5:36 1985

1: writeq/l is the (global) built-in predicate.

2: yes/0 is local in module one. read/l reads glcbal terms. mod wnif unifies
the answer yes with yesSme

3: Without qualification, loctest/l is inaccessible fram the global module.
4: Set current module to one.
5: This time, writeg/l refers to the local definition in module one.

6: Since there is no local definition of test/l, {(being now in module cne),
a global definition is attempted.

-12 -

7: The global atom yes, which is read by read/l, does not unify with the local
atan yes/@ of module one.

The following example shows how to import a definition.
It also shows that the mxiule declaration need not be the first
sentence in a sowce file. nything occurring before the mcdule declaration
is considered glcobal.

Listing for file rev.pro

1 genlist(o,[]) - |

2 genlist{ n,L n| taill]) :- mis n- 1, genlist(m, tail)

3 et — - — i -

4 ;- module(reverse) .

5 -+- import append/3 fraw append .

6 :— global(show/1) .

5

8 show(_n) :- genlist(_n, list) , reverse(_list,_revlist) , write(_revlist)

)

10 reverse([]1,[])

11 reverse([_a | _rest] , _list) :- reverse(_rest, revrest) ,

12 . append(_revrest,[al, list) .
Total nunber of errors 3

Total number of warnings g

Campilation campleted succesfully

Listing for file app.pro

: = module(append) .

1

2

3 append((], 1, 1) . 7

4 append({_ a | _ 1137, 12, [al _13]) :=append(_ 11, 12, _13) .

Total nunber of errors J
Total nunber of warnings G

Canpilation completed succesfully

-13 -

Script started on VWed Jun 19 22:25:01 198
iris% BIMprolog rev.pro app.pro
Blllprolog - release 2.7 5-6-1985

I'ev .pro consulted.

app.pro consulted.

> 2= show{1l0) .
[1,2,3,4,5,6,7,€,9 1]
> ?- mlistirg{append) .

append(nil, 1, 1
append([a |
append(_11 ,

3\
1.
g 12,

12, T13)
> ?- nlisting(reverse) .

reverse(nil,nil).

reverse(l a | rest J, list) :-
reverse(rest , revrest),
append(Tevrest ,[_a J, _list).

> ?- mlisting('') .

genlist(f,nil) :-
i

genlist(n ,[n | _tail]} :-
_m is n -1,
genlist(m , _tail).

show(n) :- .
genlist(n , _list),
reverse{(list , revlist),

write(_revlist)
> ?- stop .

iris% °
script done on Wed Jun 19 22:25:58 1985

B, 12,0 a | _131) :-

