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ABSTRACT

When a self-adaptive system needs to adapt, it has to analyze the
possible options for adaptation, i.e., the adaptation space. For sys-
tems with large adaptation spaces, this analysis process can be
resource- and time-consuming. One approach to tackle this prob-
lem is using machine learning techniques to reduce the adaptation
space to only the relevant adaptation options. However, existing ap-
proaches only handle threshold goals, while practical systems often
need to address also optimization goals. To tackle this limitation,
we propose a two-stage learning approach called Deep Learning
for Adaptation Space Reduction (DLASeR). DLASeR applies a deep
learner first to reduce the adaptation space for the threshold goals
and then ranks these options for the optimization goal. A benefit of
deep learning is that it does not require feature engineering. Results
on two instances of the DeltaloT artifact (with different sizes of
adaptation space) show that DLASeR outperforms a state-of-the-art
approach for settings with only threshold goals. The results for
settings with both threshold goals and an optimization goal show
that DLASeR is effective with a negligible effect on the realization
of the adaptation goals. Finally, we observe no noteworthy effect on
the effectiveness of DLASeR for larger sizes of adaptation spaces.
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1 INTRODUCTION

Many systems today operate in uncertain environments. For such
systems, employing a fixed configuration may result in sub-optimal
performance. For example, a web-based system that runs a fixed
number of servers will waste a lot of resources when the load is
very low, but be insufficient when there is a peak load [25].

Self-adaptation is one prominent approach to tackle such prob-
lems [6, 40]. A self-adaptive system uses a feedback loop that moni-
tors the system and its environment to determine whether the adap-
tation goals are satisfied under uncertain conditions [12, 30, 36]. In
case the goals are not satisfied, the feedback loop determines the
best option for adapting the system to meet the adaptation goals. In
the above example, enhancing the system with self-adaptation capa-
bilities will enable it to increase or decrease the number of servers
based on the actual load. This results in higher user satisfaction as
well as improved economical and ecological use of resources.

In this paper we apply architecture-based adaptation [14][26][45]
using the MAPE-K reference model (Monitor - Analyzer - Planner -
Executor - Knowledge) [23, 44]. Our focus is on the analysis of the
adaptation options, i.e., the adaptation space (a task of the ana-
lyzer), and ranking the adaptation options enabling to select the
best option (a task of the planner). The adaptation space consists
in general of all the possible configurations that can be reached
by applying adaptation actions to the current configuration of the
system. Finding the best adaptation option in a large adaptation
space is often computationally expensive [5, 6, 9, 41], in particular
when rigorous analysis techniques are used, see for example [3, 32].
One approach to tackle this problem is improving the run-time
performance of model checking in two steps: a pre-computation
performed at design time results in a set of symbolic expressions
that are evaluated at runtime by replacing variables with mon-
itored values [13]. Another more generally applicable approach
that has been proposed recently is reducing the adaptation space.
Adaptation space reduction aims at retrieving a subset of adapta-
tion options from an adaptation space that contains only relevant
system configurations that are then considered for analysis.

Existing work has showed that different techniques can be used
to reduce adaptation spaces, including feature selection [4, 31],
search-based techniques, e.g., [5, 24], and machine learning, see
e.g., [11, 37]. Among the learning techniques that have been studied
are decision trees, classification, regression, and online learning.
However, current approaches only handle threshold goals, i.e., goals
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where a system parameter needs to stay below or above a given
value. For instance, the throughput of a web-based system should
not drop below a required level. For many practical systems today
this is not sufficient as they also need to address optimization goals.
For instance, the operational cost of a web-based system should be
minimized. This leads to the following research question:

How to reduce large adaptation spaces of self-adaptive systems with
multiple threshold goals and an optimization goal effectively?

With effectively, we mean the solution should ensure: 1) the reduced
adaptation space is significantly smaller, 2) high performance, i.e.,
the reduced adaptation space covers the relevant adaptation options
well, 3) the effect of the state space reduction on the realization
of the adaptation goals is negligible, 4) there is no notable effect
on 1, 2 and 3 for larger sizes of the adaptation space.

To answer the research question, we propose a novel approach
for adaptation space reduction: “Deep Learning for Adaptation
Space Reduction” (DLASeR). DLASeR reduces the adaptation space
in two learning stages. In the first stage, a classification deep neural
network is applied to reduce the adaptation space for the threshold
goals. In the second stage, a regression deep neural network is
applied to rank the options, further reducing the adaptation space
for the optimization goal.

The motivation for applying deep learning is threefold. First,
compared to classic machine learning that relies on linear models
as for instance in [37], we want to investigate the effectiveness of
deep learning relying on non-linear models. Second, classic learn-
ing techniques usually require feature engineering, but deep learn-
ing can handle raw data, making feature engineering unnecessary.
Third, given the success of deep learning in various other domains,
e.g. computer vision, we want to explore the applicability of deep
learning for an important problem in self-adaptive-systems.

The effectiveness of DLASeR is evaluated on two instances of
the DeltaloT artifact [19], with different adaptation space sizes. The
Internet-of-Things is a particularly interesting domain to apply
self-adaptation, given its complexity and high degrees of uncer-
tainties [46]. We define different metrics to evaluate DLASeR and
compare the results with alternative approaches.

The remainder of this paper is structured as follows. Section 2
illustrates the problem we tackle in this paper with a concrete exam-
ple. Section 3 gives a high-level overview of the research methodol-
ogy. In Section 4, we specify metrics to measure the performance of
solutions. Section 5 presents DLASeR and its learning pipeline. In
Section 6, we describe the MAPE-K runtime architecture enhanced
with DLASeR. In Section 7, we evaluate DLASeR for different set-
tings. Section 8 discusses related work on the use of learning in
self-adaptation. Finally we draw conclusions in Section 9.

2 PROBLEM ILLUSTRATION BY EXAMPLE

In this section, we illustrate the problem we tackle in this paper
with a concrete example case in the domain of Internet of Things.
We use the same case for the evaluation of DLASeR in Section 7.

2.1 DeltaloT in a Nutshell

The DeltaloT artifact offers a reference Internet-of-Things (IoT)
application that supports research on self-adaptation [19].
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DeltaloT comprises of a set of battery-powered motes that are
equipped with different types of sensors to measure parameters in
the environment. The network employs wireless multi-hop com-
munication to relay the sensor data from the motes to a gateway
that is connected with a user application. In this paper, we use two
instances of DeltaloT, one with 15 motes, and one with 37 motes.
The larger network is more challenging in terms of the number
of possible configurations to adapt the system. We use DeltaloTv1
and DeltaloTv2 to refer to the smaller and larger instance of the
network respectively. The networks are time-synchronized, i.e., the
communication is organized in cycles with a fixed number of slots.
Neighbouring motes are assigned such slots during which they can
exchange packets. The cycle time for DeltaloTv1 is 8 minutes, while
it is 9.5 minutes for DeltaloTv2.

Crucial quality goals of DeltaloT are the energy consumed by
the motes (to be minimized), and packet loss and latency of packet
transmission (to be kept below a given level). These goals are con-
flicting as transmitting packets with less energy will reduce packet
loss but reduce the lifetime of batteries. Furthermore, the IoT net-
work is subject to various types of uncertainty, which makes it very
challenging to achieve the quality goals. The main uncertainties are
interference along network links and changing load in the network,
i.e., motes only send packets when there is useful data, which may
depend on environment conditions that are difficult to predict.

To achieve the goals despite of the uncertainties, the network
settings need to be optimized. We consider two possible settings
here. On the one hand, the transmission power of the motes can be
set in discrete steps form 1 to 15. On the other hand, the distribution
of messages sent to parents, i.e., the distribution factor, can be set.
If a mote only has one parent, it obviously will relay 100% of its
messages to its parent. But, when a mote has multiple parents
(in our case maximum two), the fractions of messages sent to the
parents can be chosen. For DeltaloTv1, we consider settings in steps
of 20%, while for DeltaloTv2 we consider settings in steps of 33%.

In practice, typically a conservative approach is used where the
transmission power of the motes is set to maximum and all messages
are duplicated to all parents. These settings are then manually
adjusted using trial and error. In this paper, we automate these
costly and error-prone management tasks using self-adaptation.
The quality goals of the IoT network then become adaptation goals.

2.2 Adaptation goals

In this paper, we consider two types of adaptation goals: (i) a thresh-
old goal that requires that some quality property should either re-
main below or above a given value, and (ii) an optimization goal
that requires that some quality property should be minimized or
maximized. Concretely, the adaptation goals for DeltaloT that we
consider are defined as follows:

T1: The average packet loss over 12 hours should not exceed 10 %.
T2: The average latency over 12 hours should not exceed 5 %.
O1: The energy consumption should be minimized.

In the approach we present in this paper, the threshold goals
define constraints that determine which of the adaptation options
of the adaptation space are relevant and which options are not
relevant. The relevant adaptation options can then be ranked based
on the optimization goal and the highest ranked optimizes the goal.
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2.3 Adaptation Space

The adaptation space is the set of adaptation options. In DeltaloT,
the permutation of all possible adaptation settings of the system
determines the adaptation space. For DeltaloTv1, this results in an
adaptation space of 216 adaption options. The adaptation space of
DeltaloTv1is significantly larger and consists of 4096 options.

Applying different adaptation options will produce different
qualities for the system. For DeltaloT these qualities are packet
loss, latency and energy consumption. During the analysis of the
adaptation options, these qualities can be predicted. Fig. 1 shows
the adaptation space at a particular point in time (i.e., for a par-
ticular cycle) of the DeltaloTv1 network. The adaptation options
are presented in terms of their qualities predicted during analy-
sis. Different techniques can be used to predict the qualities of
adaptation options. For instance, the quality of the system can be
represented as a parameterized Discrete Time Markov Model. One
set of parameters represent the possible settings of the system, an-
other set represent uncertainties. By configuring the model for a
given setting using the current knowledge about uncertainties, and
representing the quality property of interest as a logical expression,
one can use probabilistic model checking to determine the expected
quality of the adaptation option, see for instance [3].

Representing the adaptation options in 3D allows to visually
grasp how the options are expected to achieve the adaptation goals.
The threshold values for the packet loss and latency goals demarcate
the relevant adaptation options, which are graphically represented
by the grey box of the figure. The positioning of each adaptation
option along the z-axis corresponds with the prediction of the
quality property that needs to be optimized. The best adaptation
option will then be the lowest in the box.
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Figure 1: Adaptation space for DeltaloTv1 at one point in
time. Red and blue dots represent respectively adaption op-
tions that meet and not meet the threshold goals T1 and T2.

It is important to note that adaptation options have dynamic
behavior, i.e., their predicted qualities change over time (i.e., in
different adaptation cycles). This is direct consequence of the un-
certainties that the system is subjected to. Suppose that there is
suddenly substantial more interference (e.g. noise) in cycle x + 1.
Then it is obvious that for most adaptation options the packet loss
in cycle x + 1 will be higher than the previous cycle x. Fig. 2 shows
how the predicted quality values for one of the adaptation options
change over a sequence of cycles.
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Quality: packetloss Quality: latency Quality: energyconsumption

Figure 2: Evolution of the qualities of a certain adaptation
option of in DeltaloTv1 over a sequence of cycles.

2.4 Illustration of the Problem

Consider now the adaptation space of DeltaloTv2 at some point in
time, as shown in Figure 3
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Figure 3: Example of a large adaptation space in DeltaloTv2.

The adaptation space in this example consists of 4096 adaptation
options. Applying rigorous methods to analyze this large adaptation
space will be infeasible within the available cycle time. The problem
is then how to reduce this space to only the valid adaptation options
that can then be analyzed. The relevant adaptation options are those
in the box defined by the threshold goals in Figure 3.

2.5 Learning Approach

In DLASeR, we apply deep learning to reduce large adaptation
spaces. Deep learning uses neural networks as learning models. A
neural network connects neurons that are organized in layers. The
layer that receives external data is the input layer, while the layer
that produces the result is the output layer. In DeltaloT, the input of
the neural network are configurations of adaptation options with
uncertainties in the environment; the output are predictions of the
quality properties of adaptation options.

The neurons between layers can be connected in different ways,
e.g., fully connected or group based. A propagation function com-
putes the input to a neuron from the outputs of its predecessor
neurons and their connections as a weighted sum. The network
learns by adjusting the weights of the connections by minimizing
the observed errors, improving the accuracy of results over time.
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3 RESEARCH METHODOLOGY

To tackle the research problem, we followed a systematic method-
ology as shown in Fig. 4.
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Figure 4: Overview of research methodology.

Based on the state-of-the-art and our own experiences with ap-
plying self-adaptation in IoT, we defined the research question (see
the introduction). Earlier work that applied machine learning tech-
niques to reduce large adaptation spaces focused on threshold goals
only. In this paper, we focus on both threshold and optimization
goals. Inspired by recent progress in the area of deep learning,
we decided to investigate whether we can use deep learning to
effectively reduce large adaptation spaces for both threshold or
optimization goals, without compromising the system goals.

Once we determined the research question, we specified the
metrics that allow us to measure the effectiveness of DLASeR and
compare it with other approaches. Next, we devised DLASeR’s
learning pipeline that applies deep learning both for threshold and
optimization goals. This pipeline was then instantiated for the two
evaluation cases of DeltaloT. We then evaluated the DLASeR and
compared it with representative related approaches. Finally, we
reflect and provide an answer to the research question.

4 METRICS

To evaluate DLASeR, we identified two metrics to evaluate the
performance of the trained learning model, and a third metric to
compare the effectiveness of DLASeR with other approaches.

4.1 Precision and recall

Precision and recall are two important metrics to evaluate an ap-
proach that deals with adaptation space reduction. Precision cap-
tures how many of the predicted adaptation options are relevant.
Recall, on the other hand, indicates how many of the relevant adap-
tation options are predicted. A low recall will result in more feasible
adaptation options that are not verified.

Both metrics are combined in a single score, called F1 score, that
gives both metrics an equal importance. Concretely, the F1-score is
defined as the harmonic mean of precision and recall: [15]:

5 precision * recall
*

F1= (1)

precision + recall
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We will use the F1 score to evaluate DLASeR and compare solutions
for the reduction of the adaptation space based on threshold goals.

4.2 Spearman correlation

Spearman correlation, or Spearman’s rho, is a useful non-parametric
measure of rank correlation. We use this metric for evaluating
the ranking of adaptation options based on an optimization goal.
Spearman correlation converts the values of the estimated quality
property (for each adaptation option) to numeric ranks. Then, the
linear relationship is computed with the true ranks. This allows
assessing how well a monotonic function describes the relationship
between the predicted and the true ranks. Large errors are penalized
harder. For example, swapping the first and third rank in prediction
results in a worse association than swapping the first and second
rank. For more details about Spearman correlation, we refer to [47]

4.3 Average adaptation space reduction

In addition to F1 and Spearman correlation, we define an integrated
metric to compare the effectiveness of different adaptation space
reduction approaches. This metric captures the average (relative)
adaptation space reduction (AASR in short). AASR measures per-
centage of adaptation options that are not considered relevant. The
metric AASR is particularly suitable for the problem under consid-
eration as it covers the high-end goal of adaptation space reduction.

The interpretation of the relative adaptation space reduction de-
pends on the types of goals considered. When focusing on threshold
goals (we refer to this as the threshold approach), the relative adap-
tation space reduction corresponds to the percentage of adaptation
options that are predicted to conform with the given threshold goals.
In the case of optimization goals (i.e., the optimization approach),
the relative adaptation space reduction corresponds to 100% minus
the percentage of adaptation options that have to be analyzed until
an adaptation option is found that meets all the threshold goals.

It is important to note that the relative adaptation space reduc-
tion metric is influenced by the “hardness” of the threshold goals.
Suppose that the threshold goals are not very restrictive, thus many
adaptation options lay within the feasible box (see Fig. 3). Then, the
threshold approach will result in a rather small reduction, whereas
for the optimization approach a large reduction is expected. On the
other hand, for very restrictive threshold goals the opposite is true.
A larger reduction for the threshold approach can be expected, and
a smaller reduction for the optimization approach.

5 DEEP LEARNING FOR ADAPTATION SPACE
REDUCTION

We introduce now DLASeR. DLASeR spans two stages of a learning
pipeline: an offline and online stage. We defined a generic learning
pipeline that can be used both for threshold and optimization goals.
For each goal type, we select a distinct deep learning model and
a scaler that are maintained throughout the pipeline. We use the
DeltaloT example to illustrate DLASeR and its learning pipeline.

5.1 Offline Stage of DLASeR Learning Pipeline

In the offline stage of the pipeline, shown in Fig. 5, we aggregate
data of a series of adaptation cycles (via observation or simulation of
the system). In order to successfully train a (deep) neural network, it
is important that all relevant data is collected. We refer to this data
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Figure 5: The offline stage of the learning pipeline.
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Figure 6: The online stage of the learning pipeline.

as features.!. A feature vector for DeltaloT contains: the distribution
factor per link that determines the percentage of messages sent
over the link and the setting of the transmission power for each link
(configuration parameters), the traffic load and the signal-to-noise
ratio over the links (uncertainties), and the current qualities of the
system (one for each adaptation goal).? The aggregated data allows
us to perform back-testing of candidate learning solutions on the
application and evaluate their performance. To that end, we have
split the aggregated data in a train set and a validation set. It is
important that both sets contain data of consecutive cycles without
any overlap. For example, if the train data contains all data from
cycle 1 up to cycle n, then the validation data should contain all the
remaining data starting from cycle n + 1.

The main activity of the offline stage of the pipeline is model
selection for which we use back-testing. During model selection, we
use the data of the train set as input to learn the parameters of the
deep learning models, one model for each quality goal. Then, we let
the models make predictions for the corresponding quality property
using the validation set. More specifically, model selection aims at
finding optimal hyper-parameter settings. The hyper-parameters
are the number of layers of the deep learning model, the number of
neurons, the batch size, and the learning rate, the optimizer, as well

LA feature refers to measurable property or characteristic of the system that affects
the effectiveness of the learning algorithms. These features should not be confused
with features that define the adaptation space, such as for instance authentication or
caching techniques as in [11].

2We decided not to apply feature selection, which is a common pre-processing step in
machine learning. Feature selection typically requires domain knowledge. Furthermore,
it is possible to miss important features due to the limited coverage of the aggregated
data. Since deep learning can handle raw data, feature selection can be avoided.
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as the scalar algorithm. We explain batch size, learning rate, the
optimizer, and the scalar algorithm below. To determine the optimal
values of the hyper-parameters for a given model we applied grid
search [15], meaning that a model is trained and evaluated for
every combination of hyper-parameters. The training process ends
when the model is overfitting, i.e., the model learns the details and
noise in the training data to the extent that it negatively impacts
the performance of the model on new data.® Once the models are
trained, they are evaluated on the validation data. The effectiveness
of models for threshold goals is measured by the F1-score, whereas
we use Spearman’s rho for determine the effectiveness of models
for optimization goals.

Model selection results in a deep learning model and a scaler
algorithm. We explain these now more in detail.

5.1.1 Scaler. A scaler normalizes the data of the features, which is
common pre-processing step in machine learning. Learning algo-
rithms tend to perform better when scaling is applied to the data
[21]. Shanker M. et al. demonstrated these effects also for neural
networks [38]. During grid search we determined the optimal scaler
for the different deep learning models. We considered the options
standard scaling, min-max scaling, max-abs scaling, and no scaling.

5.1.2 Deep learning model. We started with studying classifica-
tion deep neural networks. These networks are trained to predict
whether or not an adaptation option meets a threshold goal. Then
we studied regression deep neural networks. These networks are
trained to infer a ranking for the adaptation options. This ranking
is based on the regressed values for the optimization quality.

As we explained above, the hyper-parameters determined during
grid search (besides the scalar algorithm) are: the number of layers
of the deep learning model (i.e., network depth), the number of
neurons in each layer, batch size, learning rate, and the optimizer.

The depth of the network and the number of neurons in each
layer influence the complexity and also to total number of learnable
parameters, which affects the learning time. The batch size defines
how much of the data shall be looked at before doing an update
of the model based on the output of the model (classification of
adaptation options for the models of threshold goals and ranking
of adaptation options for the models of optimization goals). A large
batch size results in less updates, where a small one results in
many updates. This affects the granularity of the learning. Batch
size is highly correlated with the learning rate. The learning rate
determines the degree of updates that are performed during the
learning process. This will affect the learning speed. Finally, the
model optimizer determines the algorithm that is used to perform
the parameter updates utilizing the learning rate. Setting all these
hyper-parameters properly enables the deep neural network to
adapt not too slow nor too fast to changes.

When the deep learning models are fine-tuned and proper scalers
are determined, these elements are integrated into a coherent so-
lution. The solution can then be deployed which brings us to the
second stage of the pipeline.

5.2 Online Stage of DLASeR Learning Pipeline

The online stage, shown in Fig. 6, consists of two cycles.

3We applied an early stopping procedure that discards 10% of the train data to check
whether or not there is a large discrepancy in the train error, and halt if necessary.
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5.2.1 Training Cycle. In the Training cycle, the learning models are
trained. The goal of this cycle is to initialize the learnable parame-
ters of the models properly to the current setting of the problem at
hand. To that end, relevant runtime data is collected to construct
feature vectors. This data is then used to update the scaler (e.g.,
updating min/max values of parameters, the means, etc.) and the
feature vectors are adjusted accordingly. The deep learning model
is then trained using the transformed features, meaning the pa-
rameters of the models are initialized, for instance the weights of
the contributions of neurons. The training stage ends when the
validation accuracy stagnates, i.e., when the difference between the
predicted values with learning and the actual verification results
are getting small. Since in this cycle the models are only initialized,
there is no reduction of the adaptation space yet.

5.2.2  Learning Cycle(s). In the Learning cycle, the learning mod-
els are actively used to make predictions about the qualities of
adaptation options to reduce the adaptation space. Furthermore,
the analysis results are used to incrementally update the learning
models. Concretely, the features of the feature vectors are trans-
formed similar as for the training cycle. The deep learning model
then makes predictions for the feature vector of each adaptation
option. The adaptation options are verified based on these predic-
tions. In our work, we use statistical model checking [2, 8, 42, 43] at
runtime to verify the adaptation options during analysis, however
other analysis techniques can be applied. Analyzing the adaptation
options differs for the threshold and the optimization approach.

For the threshold approach, the adaptation options that are pre-
dicted as relevant, i.e., compliant with the threshold goals, are used
for verification. In addition, we add a fixed percentage of the other
adaptation options, i.e., the exploration rate. We explore these op-
tions that due to uncertainties, were not considered relevant so far,
may now become relevant. As a final step, the verification results
are used to further improve the learning models. Algorithm 1 shows
how the adaptation space reduction is applied for threshold goals.

Algorithm 1 Adaptation space reduction for threshold goals

. pred_subspace < K.adaptation_options

: for each DL_thresh_model in K .threshold_models do
preds <— DL_thresh_model.predict(features)
pred_subspace «— pred_subspace N preds

: end for

: unselected < K.adaptation_options \ pred_subspace

. explore « unselected.randomSelect(exploration_rate)
. subset « pred_subspace U explore

. Analyzer .verifyAdaptOpt(subset)

. features, qualities « K.verification_results
: for each DL_thresh_model in K .threshold_models do
DL_thresh_model.update(features, qualities)

. end for

=T R RS B NS R

> Knowledge

[ T
TSI RS

In lines 1 to 5 the relevant subspace is predicted based on thresh-
old goals (DL_thresh_model refers to a model for any threshold
goal). For each threshold goal, the corresponding deep learning
model, stored in the Knowledge (K), predicts the relevant subspace.
Note that the predict() function on line 3 first transforms the fea-
tures before making predictions. The intersection of the predicted
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subspaces that are relevant for each goal represents the relevant
subspace. This process represents the actual adaptation space re-
duction for all threshold goals. In lines 6 to 9 the adaptation options
for verification are selected. We start from the relevant subspace
and add a randomly selected set of adaptation options that are not
in the predicted subspace based on the exploration_rate. Then, the
combined set is sent to the verifier for analysis. The verification
results, i.e., the predicted qualities of the verified adaptation options
are stored in the knowledge. In lines 10 to 13 the verification results
are exploited to update the learning models for the threshold goals.
First, we retrieve the features and the analysis results (i.e., the quali-
ties for each threshold goal) of the verified adaptation options from
the knowledge. Then, for each threshold goal, the corresponding
model is updated. To that end, the relevant quality for the given
model is selected, e.g. packet loss for the packet loss threshold
model. This information is then used to update the parameters of
the deep learning model using the same learning mechanism as we
used in the training cycle. In case there is no optimization goal, the
selection of the adaptation option to adapt the system can be made
based on the adaption options that meet all the threshold goals.
However, if there is an optimization goal, we need to identify the
adaptation option that optimizes this goal.

Algorithm 2 Adaptation space reduction for threshold and opti-
mization goals.

: Predict relevant subspace (line 1 to 5 from Algorithm 1)

: DL_opt_model « K.optimization_model

: ranking < DL_opt_model.predict(features_pred_subspace)

: valid_found < False, idx < 0

. verified_subspace < 0

: while not valid_found do

adapt_opt «— rankeding[idx]

Analyzer.verifyAdaptOpt(adapt_opt)

_,qualities «— K.verification_results[idx]

if qualities meet all threshold goals then
valid_found < True

end if

verified_subspace.add(adapt_opt)

idx « idx + 1

: end while

: unselected «— K.adaptation_options \ verified_subspace

17: explore « unselected.randomSelect(exploration_rate)

18: Analyzer.verifyAdaptOpt(explore) > Knowledge

19: features, qualities « K.verification_results

20: Update threshold models (line 11 to 13 from Algorithm 1)

21: DL_opt_model.update(features, qualities)

> Knowledge

T N B R LI S VR R

T e T S O
U R W N = O

The optimization approach starts from the adaptation options se-
lected by the threshold approach. Algorithm 2 shows the integrated
approach that applies to the different types of goals.

Just as in algorithm 1, in line 1, we predict the relevant subspace
for the threshold goals. Then, in line 2 to line 3, the optimization
deep learning model predicts a ranking of the relevant adaptation
options, i.e., the predict() method on line 3 outputs the adaptation op-
tions in ranked order based on the optimization goal.* In lines 4 to 18

4Our approach relies on goals defined as rules with only a single optimization goal.
Multi-objective optimization is beyond the scope and subject of future research.
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we iterate over the ranked adaptation options in descending order
of the predicted value for the quality of the optimization goal. We
verify an adaption option and check whether it complies with the
threshold goals. If this is the case we select this option for adap-
tation. If not, we continue verifying adaptation options until one
is found that satisfies the threshold goals. Then, we randomly se-
lect a sample of adaptation options from the options that were not
verified based on the exploration_rate. These unexplored options
are then also verified. All the verification results are stored in the
knowledge. Next, in lines 19 to 21 the deep learning models are
updated, exploiting the verification results.

Note that in the case where we only consider threshold goals
(the threshold approach), the adaptation space reduction occurs
prior to verification. If we consider both threshold goals and an
optimization goal, the adaptation space reduction is conducted by
cleverly and efficiently verifying adaptation options, i.e., in the
order of their predicted ranking with respect to the optimization
goal until an option is found that satisfies all the threshold goals.

5.3 DLASeR’s Neural Network Architecture

Technically, we use a neural network with multiple nonlinear hid-
den layers [7, 16, 29]. Non-linearity refers to the functions that
determine the flow in the network. Non-linear layers help captur-
ing the complex uncertainties of the problem at hand. Concretely,
for the activation function we apply the rectified linear unit (ReLU).
This function has proven to greatly accelerate the convergence of
stochastic gradient descent, compared to the sigmoid/tanh func-
tions [27]. As activation function in the last layer we apply a sigmoid
and linear activation in the case of classification and regression re-
spectively. For the classification neural network, we want as output
either 1 or 0, representing meeting and not meeting the threshold
goal respectively. For the regression neural network, we want an
output value that corresponds to the quality of the property we
want to optimize (for DeltaloT this is the value of the energy con-
sumption). Sigmoid is desirable for binary classification, since it
produces a value in the range 0 to 1. Linear activation can output
any value and is the standard activation function for the output
layer in the case of regression. To prevent overfitting, we apply reg-
ularization. On the first layer we apply L1 regularization, enforcing
some feature selection by the neural network [34]. On the other
layers we apply L2 regularization that incorporates the squared sum
of the weights, ensuring that the weights will not become (very)
large, reducing overfitting. Finally, before the final classification or
regression head we employ a dropout with a fraction of 10% [39].
These regularization techniques make the models more robust.

6 MAPE ARCHITECTURE WITH DLASER

Fig. 7 shows how the deep neural network learners of DLASeR are
integrated in the MAPE-K architecture.

We focus here on the Analyzer, Planner, and the relevant models
of Knowledge. When the analyzer is triggered (1), it collects the
possible adaptation options (2), i.e., all possible configurations of
the managed system that are reachable through adaptation from the
current configuration. Then the threshold deep learner determines
the relevant set of adaptation options (3.1-2). These options are
then written to the knowledge repository (4) and the planner is
triggered (5). The planner reads the relevant options together with
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an exploration sample (6). The optimization learner is then invoked
to rank the options (7.1-2). The options are then verified one by
one for the all the goals in order of ranking (8.1-2). As soon as an
option is found that complies with the threshold goals, the option
will be selected for adaptation. Finally, the verification results are
exploited to update the deep learning models (9.1-2). After that, a
plan is generated for the selected adaptation option and the executor
is invoked to apply the adaptation (10-11). The realization of these
last two steps are outside the scope of this paper.

7 EVALUATION

We evaluate DLASeR using the DeltaloT artifact. We used the
DeltaloT simulator, as experimentation with the real physical setup
is time consuming. We start with the explaining the evaluation
setup. Then, we report the results of the offline stages, the results
for threshold goals only and then the results for both types of goals.
The section concludes with a discussion of validity threats. All
evaluation material is available at the project website [10].

7.1 Evaluation Setup

We evaluate DLASeR on two instances of DeltaloT (Section 2.1). For
both instances we use the same settings. The uncertainty profiles
for the traffic loads ranged from 0 to 10 messages per mote per
cycle. The network interference varied between -40 dB and +15 dB.
The MAPE-K feedback loop was designed using a network of timed
automata. These models were executed by using the ActivFORMS
execution engine [18, 20]. We applied runtime statistical model
checking using Uppaal-SMC for the verification of adaptation op-
tions [8]. The exploration rate was set to 5 %.

For both instances we consider 275 online adaptation cycles,
corresponding with a wall clock time of 77 hours. We only used a
single cycle to initialize the network parameters. The remaining 274
cycles are evaluated as learning cycles. We use as a benchmark for
the threshold goals the approach proposed by Quin et al. [37]. To
evaluate the quality of the adaptation decisions made by the learn-
ing approach, we benchmark the results with a reference approach
that analyses the whole adaptation space without learning.

For the learning solutions, we used the implementations of
scalers from scikit-learn [35] and neural networks from Keras and
Tensorflow [1]. We run the simulated self-adaptive system on an
i7-3770, 3.40GHz, 12GB RAM,; the deep learning models are trained
(and maintained) on a NVIDIA Tesla T4 GPU with 12 GB RAM.

7.2 Offline settings

As explained in Section 5, we used grid search for selecting models
for the learners. Table 1 shows the best parameters of the pipeline
obtained by evaluating the approaches on 30 sequential cycles. We
note that the models can predict latency significantly better than
packet loss. We speculate that this is due to the fact that the latency
goal is less restrictive than the packet loss goal. On average the per-
centage of adaptation options that meet the latency goal lies around
90% for DeltaloTv1 and 80% for DeltaloTv2. Whereas the packet
loss goal is satisfied respectively by ca. 40% and 20% of the adapta-
tion options. On the other hand, when scaling up to the larger in-
stance, we observe that the F1-score of the packet loss degrades with
10.37%, whereas the F1-score of the latency improves with 2.09%.
For the optimization goal, we notice a large decay in Spearman
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Figure 7: Runtime architecture of the deep learning approach to reduce large adaptation spaces. The threshold deep learner
and optimization deep learner components together with their models are determined during the offline activities as shown
in Figure 5. The runtime activities within the two learners follows the workflow of online activities shown in Figure 6.

Table 1: Best grid search results for the threshold and optimization goals.

Problem Goal Hyper parameters Objective

Threshold Scaler Batch size Learning rate Optimizer Hidden layers | F1-score
DeltaloTv1 Packet loss Standard 128 2e-3 Adam [20, 10, 5] 83.18%

Latency MaxAbs 64 5e-4 Adam [20, 10, 5] 93.96%

Packet loss Standard 2056 5e-3 Adam [50, 25, 10, 5] 75.81%
DeltaloTv2

Latency Standard 1028 2e-3 Nadam [50, 25, 10, 5] 96.05%

Optimization Scaler Batch size Learning rate Optimizer Hidden layers | Spearman’s rho
DeltaloTv1 | Energy consumption | Standard 32 5e-3 RMSprop [20, 10, 5] 87.63%
DeltaloTv2 | Energy consumption | MaxAbs 1028 5e-4 Nadam [50, 25, 10, 5] 26.04%

correlation that is reduced from 87.63% for DeltaloTv1 to 26.04% for
DeltaloTv2. At first sight, this might seem problematic. But, further
analysis will show that this difference does not lead to significantly
worse results. Based on the obtained configurations, we deploy
the models in the simulator to perform adaptation space reduction.

7.3 Results

Table 2 presents the results obtained with DLASeR. For the thresh-
old goals (T1 & T2) we obtain a reduction of the adaptation space
of 64.42% for DeltaloTv1 and 92.24% for DeltaloTv2. The F1 scores
are excellent, but, decrease from 85.78% to 73.06% when scaling up
to the larger instance. DLASeR achieves a good reduction of the

adaptation space for the small instance of DeltaloT (64.42%) and an
excellent result for the large instance (92.94%).

Table 2: Results for DLASeR & comparison with Quin et al.

Problem | Approach | Goals F1score AASR
DLASeR T1 & T2 85.78% 64.42%

DeltaloTv1l | DLASeR T1&T2&01 / 99.20%
QuinF.etal | T1 & T2 85.85% 50%
DLASeR T1 & T2 73.06% 92.94%

DeltaloTv2 | DLASeR T1&T2&01 / 98.53%
QuinF.etal | T1 & T2 73.01% 75.5%
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We compare these results with the work of Quin et al. [37],
where classification was used for adaptation space reduction on
identical cases. The results show that both approaches achieve
similar results for F1 score. However, there is a significant difference
for the adaptation space reduction (AASR): for DeltaloTv1 we have
64.42% for DLASeR versus 50.00 % for Quin et al.; for DeltaloTv2
we have 92.94% for DLASeR versus 75.50 % for Quin et al.

The results for settings with the three goals (threshold goals T1
& T2, and optimization goal O1) demonstrate the effectiveness of
DLASeR. With 99.20% for DeltaloTv1 and 98.53% for DeltaloTv2,
DLASeR comes close to the optimum of what can be achieved in
terms of adaptation space reduction. Figure 8 visualizes the pre-
dicted adaptation space reduction for DeltaloTv2 at one particular
point in time. The red lines in the figure indicate the region with
relevant adaptation options according to the threshold goals.

While the F1 score and AASR give us insight into the adaptation
space reduction, these metrics do not tell us anything about the
quality of the adaptation decisions made with reduced adaptation
spaces. We measure this and benchmark DLASeR with a reference
approach that applies exhaustive verification (which is the ideal
case, but practically not always possible due to time constraints).

Figure 9 shows the qualities of the system for only the threshold
goals. The results show no visible difference between the qualities
for DLASeR and the reference approach. For DeltaloTv1, the p-
values for the different qualities are between 0.15 and 0.93 (Wilcoxon
signed-rank test). For DeltaloTv2, the tests indicate that there is a
small difference for all qualities (all p-values lower than 0.014). For
example, the energy consumption for DLASeR is 0.07% higher, but
this is from a practical point of view negligible. The results are in
line with the results of Quin et al. [37].

thresholds_pred
e False
e True

10

Latency

Packet loss

Figure 8: The predicted adaptation space reduction for some
cycle in DeltaloTv2. The orange and blue dots represent re-
spectively the adaption options that are predicted to meet
and not meet the threshold goals T1 and T2.

Figure 10 shows the qualities of the system for two threshold
goals and an optimization goal, both for DeltaloTv1 and DeltaloTv2.
The reference approach again exhaustively verifies all adaptation
options to make adaptation decisions. The results show that the
threshold goals for packet loss and latency are always satisfied
with DLASeR. Regarding the optimization goal, the total energy
consumption of DLASeR is respectively 0.34% and 1.11% higher for
DeltaloTv1 and DeltaloTv2. compared to the reference approach.
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This is a small cost for the dramatic improvement of adaptation
time. For DeltaloTv2, DLASeR requires on average 50.53 seconds for
verification plus 0.92 seconds for online learning training, compared
to 16.73 minutes with the reference approach (which is in practice
infeasible since it exceeds the cycle time of 9.5 minutes).

Figure 11 visualizes the ranked adaptation space at a point in
time for such a setting. The colors indicate the ranking based on
predicted energy consumption.
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7.4 Threats to Validity

The evaluation of DLASeR is subject to a number of validity threats.
We evaluated the approach only in one domain, so we cannot gen-
eralize the conclusions (external validity). We mitigated this threat
to some extent by using two different IoT networks (based on topol-
ogy and adaptation space). However, more extensive evaluation in
different domains is required to increase the validity of the results.

The presented approach considers only a single optimization
goal. Additional research will be required to extend the proposed
approach for multi-objective optimization goals.

We have evaluated DLASeR using different metrics. Nevertheless,
the specifics of the setting of the applications we used, in particular
the graph structure of the network, the uncertainties as well as
the specific goals that we considered may have an effect on how
difficult or easy the problem of adaptation space reduction may be
(internal validity). To mitigate this threat to some extent we applied
DLASEeR to a setting of a real IoT deployment that was developed
in collaboration with an industry partner in IoT.

For practical reasons, we evaluated DLASeR in simulation. The
simulator we used applies particular forms of randomness to repre-
sent uncertainties in the problem settings. This may cause a threat
that the results may be different if the study would be repeated
(reliability). To minimize this threat, we evaluated DLASeR over a
period of several days. Furthermore, the complete package we used
for evaluation is available to replicate the study.

8 RELATED WORK

Over the past few years, we observe a growing interest in the use of
machine learning and search-based techniques in self-adaptation.
Here we discuss only a representative set of approaches most closely
related to adaptation space reduction.

Elkhodary et al. [11] apply learning in their FUSION framework
to grasp the impact of adaptation decisions on the system’s goals.
Concretely, they utilize M5 decision trees to learn the utility func-
tions that are associated with the qualities of the system. Learning
is enabled by a dynamic feature-oriented representation of the sys-
tem. As our work, FUSION results in a significant improvement
in analysis. Similarly to [31], the FUSION framework targets the
feature selection space, whereas we target the configuration space.

Quin F. et al. [37] apply machine learning for the purpose of
large adaptation space reduction. In their work, only threshold
goals were considered and the evaluation was conducted with a
focus on linear models. We research the effectiveness of non-linear
deep learning models on both threshold and optimization goals.

Metzger et al. [31] combine feature models with online learn-
ing to explore the adaptation space of self-adaptive systems. The
authors show that exploiting the hierarchical structure and the
difference in feature models over different cycles leads to a speedup
in convergence of the learning process. Our work complements
this work by focusing on a configuration space.

Jamshidi et al. [22] identify a set of Pareto optimal configuration
offline. During operation an adaption plan is generated using this set
of configurations. Reducing the adaptation space ensures that they
can still use PRISM [28] at runtime to quantitatively reason about
adaptation decisions. Our approach is more versatile by reducing
the adaptation space at runtime in a dynamic and learnable fashion.

Nair et al. [33] present FLASH that sequentially explores the
configuration space by reflecting on the configurations evaluated so
far to determine the next best configuration to explore. Other search-
based approaches [17], such as Chen et al. [5] that considers multi-
objective optimization, have been studied to deal with decision-
making in self-adaptive systems with large adaptation spaces.

9 CONCLUSIONS

To tackle the research question: “How to reduce large adaptation
spaces of self-adaptive systems with multiple threshold goals and
an optimization goal effectively?” this paper contributes DLASeR,
short for Deep Learning for Adaptation Space Reduction.

The core idea of DLASeR is to apply what can be called “lazy
verification.” In particular, the adaptation space is first reduced
using a deep learner for the threshold goals. The selected adaptation
options are then ranked using a deep learner for the optimization
goal. Only then verification starts, that is, the adaptation options
are verified one by one in the order of their predicted ranking until
an option is found that complies with the threshold goals.

The results show that DLASeR effectively reduces the adaptation
space with negligible effect on the the realization of the adaptation
goals. If we only consider threshold goals, DLASeR improves also
over a state of the art approach that uses classification.

We are currently applying DLASeR to service based systems,
which will provide us insights in the effectiveness of the approach
beyond the domain of IoT. We also plan to look into different types
of goals, in particular set point goals and multi-objective optimiza-
tion goals. In the mid term, we plan to look into the use of machine
learning in support of self-adaptation in a decentralized setting. In
the long term, we aim at investigating how we can define bounds
on the guarantees that can be achieved when combining formal
analysis techniques with machine learning.
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