
The Logic of Logic Programming

Marc Denecker and David S. Warren

October 2022

Abstract

Our position is that logic programming is not programming in the Horn
clause sublogic of classical logic, but programming in a logic of (inductive)
definitions. Thus, the similarity between prototypical Prolog programs
(e.g., member, append, . . .) and how inductive definitions are expressed
in mathematical text, is not coincidental but essential. We argue here that
this provides a natural solution to the main lingering semantic questions
of Logic Programming and its extensions.

1 Introduction

There is much ado about the “declarative semantics” of logic programs. But
for a pure positive logic program, virtually every logic programmer around the
world will accept that the Least Herbrand Model (LHM) [7] represents the state
of affairs of the universe and the predicates as determined by the program1. E.g.,
take the member program:

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

Assuming the vocabulary consists of predicate member/2, list functor |/2 and
the constant symbols [], 0, 1, 2, . . . , then the domain of the LHM is the Herbrand
universe, the set of terms built from these symbols, and the LHM contains
member(t, l) iff t is a member of list l (l not necessarily ending with []).

Historically, e.g., in [7], logic programs are explained as Horn theories, i.e.,
sets of material implications. But, Horn theories are satisfied in an extremely
broad class of (Herbrand and first-order) structures, most of which do not
match at all with the LHM. For instance, the Herbrand structure in which
all member atoms are true, satisfies the Horn theory while it is full of errors,
e.g., member(0,[1,2,3]). It is proven in [7] that the Horn theory logically en-
tails all atomic facts true in the LHM. However, the Horn theory entails none
of the intended negative literals (e.g., ¬member(0, [1, 2, 3])) and only few of the
composite formulas true in the LHM and expected to hold in a theory of list-
membership in the given universe. Arguably, the Horn theory is inadequate

1Negation in programs is discussed in Section 5.

1

as an “axiomatisation” of the LHM and the way programmers interpret their
program. This inadequacy emerges not only for the member program, but for
virtually all logic programs that logic programmers write.

Logic programming is two languages in one: a declarative and a procedural
one. Our goal is to investigate its declarative logic. We argue that such a logic
should at least play the following roles. (1) The logic should explain what the
states of affairs are that programmers associate with their program. Here in this
case, it is the LHM and only the LHM. In this logic, a logic program should be
an “axiomatisation” of the LHM, in the sense that mathematical logicians see
this. (2) The declarative logic should be related to a range of natural language
expressions that closely correspond to the formal expressions, both in syntax and
semantics. (3) (and related) The declarative logic should give non-ambiguous
insight in the meaning of the main connectives of logic programs (“:-” “,”
and “not”). (4) The declarative logic should explain not only the meaning
of finalized logic programs but also the meaning of programs in development,
components of programs. It should explain how to interpret the program while
the programmer is writing it, and not only when it is finished. E.g., when
applying logic programming to query a family database DB for siblings, the
programmer may write:

sibling(X,Y) :- child_of(X,P), child_of(Y,P), X \== Y.

The programmer writes this query without knowledge of DB and must have a
precise understanding of this query on its own, independent of the DB. The
declarative logic should explain this. Notice that the LHM semantics itself, for
all its virtues, does not provide formal semantics for such stand-alone program
components.

The goal of this paper is to present such a declarative logic and argue that it
satisfies the above criteria. It is based on existing ideas [2, 3, 4]. A logic program
is seen as a combination of definitions of all its predicates, along with an implicit
“axiom” that constrains the set of function symbols to be the constructors of
the universe. E.g., the two rules of the member program are read as an inductive
definition of membership in mathematical text.

Definition We define list membership by induction:

• (base case) x is a member of list [x|t];
• (inductive case) x is a member of [h|t] if x is a member of t.

This mathematical (non-formal) definition defines the membership as the least
relation that satisfies these two rules. Equivalently, it is the limit of the induction
process: the process that starts with the empty set, and proceeds by iterated
application of these rules until a fixpoint is reached. In this view, the similarity
between prototypical logic programs and (non-formal) inductive definitions in
mathematical text is not coincidental but essential. As a result, the second
condition of the previous paragraph will be satisfied.

The paper is structured as follows. Section 2 introduces the logic underlying
LP and discusses the meaning of the rule operator. Sections 3 and 4 use it to
analyze full logic programs and their components. Section 5 considers negation.

2

2 The declarative logic of Logic Programming

As explained in the Introduction, we now design the core declarative logic LD
(syntax and formal semantics) to formalize a logic program as a combination of
an axiom of the universe and a definition of all its predicates.

Most mathematical and philosophical logicians will agree that, to under-
stand an expression, one needs to know its truth conditions: the states of affairs
in which it is true, and the states of affairs in which it is false. A logic se-
mantics that specifies this is a truth conditional semantics. The common way
to formalize this is through a satisfaction relation M |= ψ (or a truth function
ψM). Here, ψ is an expression, theory or program, and M a structure that is
an abstraction of a state of affairs. First-order logic’s (FO) satisfaction relation
|=FO specifies a truth conditional semantics. A semantics of this type abstracts
all computational and operational aspects and formalizes the answer to the es-
sential question of declarative meaning: when is an expression true, when is it
false? In our case, the expressions ψ will be logic programs Π and their com-
ponents: an axiom of the universe and component definitions. E.g., a structure
M interpreting the relation member by a relation containing (0, [1, 2, 3]) will not
satisfy the member definition and is not a model of the definition. Hence, this
definition is false in this structure.

The semantics of FO is based on first-order structures, while in Logic Pro-
gramming, often only Herbrand structures are used. In this paper we will use
first-order structures. In particular, we cannot formalize the meaning of an ax-
iom of the universe without considering also structures (abstractions of states
of affairs) that do not satisfy it.

Definition 2.1. A (first-order) structure M for a (first-order) vocabulary Σ
consists of a non-empty universe UM , and appropriate values σM in UM for all
symbols σ ∈ Σ (an element of, or a relation or function of appropriate arity on
UM).

Definition 2.2. The Herbrand universe HU(Σ) for Σ is the set of terms over Σ.
M is a Herbrand structure of Σ if UM is HU(Σ) and constants c and functors
f/n have Herbrand values, i.e., cM = c and fM (t1, . . . , tn) = f(t1, . . . , tn).

This is the standard notion of Herbrand structure except when Σ contains
no constant symbols. In that case, HU(Σ) is empty and no Herbrand structures
exist. Instead, in logic programming semantics, one will often add an arbibrary
constant to Σ so that Herbrand structures always exist.

First-order structures do have one complication compared to Herbrand struc-
tures: while two different Herbrand structures represent necessarily different
states of affairs, all isomorphic first-order structures M,N (notation M ∼= N)
represent the same state of affairs. The following is a natural property for any
logic L with satisfaction relation |=L: for any pair of isomorphic structures
M,N , and for any expression (theory, program) ψ, M |= ψ iff N |= ψ. Stated
differently, M is a model of ψ iff N is a model of ψ. We will show that our
semantics satisfies this constraint (Definition 2.4 and Theorem 2.1).

3

Definition 2.3. For a given vocabulary Σ, and two (first-order) structuresM,N
interpreting at least Σ, we say that M and N are isomorphic relative to Σ
(notation M ∼=Σ N) if there exists a 1-1 mapping b : UM → UN such that
b(σM) = σN for each σ ∈ Σ. 2 Two structures M,N are isomorphic (notation
M ∼= N) if they interpret the same set of symbols Σ and M ∼=Σ N .

Below, we define the syntax and the satisfaction relation |=D of the logic LD
with a truth conditional semantics for logic programs Π and their components.
The outcome should be that M |=D Π iff M is (isomorphic to) the LHM of Π.
The logic LD will turn out to be a sublogic of the logic FO(ID) [3] containing
definitions with a.o., negation in the body and integrating it with FO.

The Herbrand Axiom Logic Programming uses constant and function sym-
bols in a radically more restrictive way than in FO. In LP, they are treated as
constructors of the universe of the program; in FO, the universe is arbitrary,
and constants and functors may denote arbitrary objects and functions in it.
Semantically, this leads LP to use Herbrand structures, while FO admits the
much broader class of first order structures.

Why does Prolog consider only Herbrand structures? To the programmer,
the universe of the program consists of all data structures. Compound terms
(e.g., the term [1,2,3]) are used as data structures, i.e., containers of data, from
which later data can be retrieved through unification. But this works only when
functors are interpreted as constructors. For example, consider the first-order
structure M ′ for the member Horn theory with universe {a}. All constants are
interpreted by a, every n-ary function symbol is interpreted as the map of n-tuple
(a, . . . , a) to a, every n-ary predicate is interpreted as {(a, . . . , a)}. StructureM ′

provably satisfies the Horn theory. The data structures represented by terms all
collapse into the same object a; all information stored in them has vanished and
is completely lost. This is why constructors are important in logic programming.
It is the same in functional programming. Also there, the universe of a program
is built as the collection of terms formed by a set of constructors. Of course,
functional programs have many defined non-constructor functions as well. In
LP, the only such functions are the interpreted ones, e.g., +,×.

The Herbrand Axiom for a set CF of constant and function symbols is
syntactically denoted as H(CF). It expresses that the universe is HU(CF) and
that symbols in CF are its constructors.

Definition 2.4. A structure M satisfies H(CF), notation M |=D H(CF), if UM

is HU(CF) and all symbols in CF have Herbrand values. Or, if M is isomorphic
to such a structure.

Recall that if CF contains no constants, then HU(CF) is empty and H(CF)
is inconsistent.

The Herbrand Axiom can be expressed as a combination of the unique name
axiom and the domain closure axiom for CF . The domain closure axiom cannot
be expressed in FO but requires second-order logic or inductive definitions. More
discussion is beyond the scope of this article.

2Here b is extended to functions and relations on UM in the standard way.

4

Not every structure M satisfying H(CF) is a Herbrand structure. If M
interprets a function symbol f/n not in CF , M is not a Herbrand structure and
f/n is not interpreted as a constructor. E.g., take again CF = {[], |/2, 0, 1, 2, . . .}.
Take its unique Herbrand structure and expand it for the numerical product
functor ×/2 to the structure M× by interpreting × by the function ×M× :
HU(CF)2 7→ HU(CF) that maps pairs of numbers n,m to n ×m, the product
of n and m, and maps all other pairs to []. Although M× is not a Herbrand
structure, it satisfies H(CF). Such structures are needed for the semantics of
Constraint LP, e.g., CLP(R); they are also used in examples below.

The simplest definition logic Definitions, non-formally, are a common and
precise form of human knowledge. E.g., a non-inductive definition of sibling:

Definition 1. A person x is a sibling of y if 3 x and y are different and they
share a parent.

An inductive definition is that of the reachablity relation of a graph.

Definition 2. We define the reachability relation R of graph G by induction:

• if (x, y) ∈ G then (x, y) ∈ R;

• if (x, y) ∈ R and (y, z) ∈ G then (x, z) ∈ R.

(Non-formal) definitions define concepts in terms of other concepts. We call
the latter the parameters of the definition. E.g., sibling is defined in terms of
parent, and the reachability relation R in terms of G. A definition does not
constrain the parameter concepts but derives, for each possible assignment of
values for the parameters, a unique value for the defined concept.

Basically a (non-formal, inductive) definition specifies how the value (or ex-
tension) of the defined set is obtained from the value of the parameters. It can be
explained in two equivalent ways: non-constructively, the defined set is the least
set that satisfies the rules interpreted as material implications; constructively,
the defined set is the result of the induction process: starting from the empty
set, the rules are iteratively applied in a bottom up fashion until a fixpoint is
reached. The constructive and non-constructive methods are well-known to be
equivalent.

Importantly, while the above explanations are typically used for inductive
definitions, both work for non-inductive definitions as well. E.g., it may be
overkill to use an induction process to construct the value of the sibling relation
from a given parent relation, but it does construct the correct relation.

We now introduce the formal syntax for expressing definitions.

Definition 2.5. A formal definition D is a non-empty set of definitional rules
of the form:

A← B1, · · · , Bn.

3In non-formal definitions, “if” is often used where, logically speaking, “iff” is intended.

5

where A,B1, . . . , Bn are standard atomic formulas. We allow Bi also to be t, f
and equality and disequality atoms s = t, s ̸= t. All variables are implicitly
quantified universally in front of the rule. A predicate symbol is defined by D if
it occurs in the head of a rule; a parameter symbol of D is any other non-variable
symbol that occurs in D. The set of defined predicates is denoted Def(D), the
set of parameters as Param(D).

This rule-based definition construct is syntactically similar to Aczel’s (propo-
sitional) definition logic in [1] and Martin-Löf (predicate) definition logic in [6].
However, following intuitionistic tradition, Martin-Löf proposed only proof the-
ory, not formal model semantics.

Definition 2.6. A formal definition D is inductive if its dependency graph4

contains a cycle.

E.g., the formal representation of the sibling definition:

Ds =
{
sibling(x, y)← child of(x, z), child of(y, z), x ̸= y

}
E.g., the formal representation of the non-formal definition of reachability:

DR =

{
R(x, y)← G(x, y)
R(x, z)← R(x, y), G(y, z)

}
E.g., an inductive definition of the product of a list of numbers:

DL =

{
Listproduct([], 1)←
Listproduct([h|t], h× p)← Listproduct(t, p)

}
A formal definition can define multiple predicates by simultaneous induc-

tion. For a non-formal example, take the inductive definition of even and odd
numbers: 0 is even; if n is even then n+1 is odd; if n is odd, n+1 is even.

From now on, sets D of rules can be seen as Horn theories and as definitions,
and they can be evaluated in two satisfaction relations |=FO and |=D.

Below, we define the satisfaction relation |=D for definitions D, basically by
copy paste of the above non-constructive explanation of non-formal definitions.

Definition 2.7. Let D be a definition andM a first-order structure interpreting
all symbols in D. We define that M satisfies D (notation M |=D D) if M |=FO

D and for all structures N with the same universe and values of parameters in
Param(D) as M , if N |=FO D then it holds that pM ⊆ pN for all p ∈ Def(D).

A definition does not in itself incorporate an assumption about the nature
of constants and functors as constructors. This is why |=D needs to be defined
in terms of first order structures. Thanks to this, it specifies the semantics of
the definition Dl of Listproduct which uses the non-constructor function ×.

4The graph consisting of pairs (P,Q) of predicate symbols such that Q appears in the head
and P in the body of a rule in D.

6

Definition 2.7 makes use of the non-constructive characterisation of defini-
tions. Alternatively, the value pM of defined predicates can be characterized
constructively, stating that M is to be the limit of a (potentially transfinite)
induction process M0,M1, . . . ,Mn,Mn+1, . . . that starts at the structure M0

identical to M except that defined predicates are interpreted by the empty set.
From then on, Mn+1 is obtained from Mn by applying one or more or all appli-
cable rules in a bottom up way (and taking the union values for limit ordinals).
In the constructive interpretation, rules specify the atomic operations of the
induction process. Martin-Löf called them productions. The induction process
in case of programs with and without negation was formally described in [4].

Example 2.1. The definition DR of reachability (given above) contains only
predicate symbols and has no Herbrand structures but DR has infinitely many
first-order models. In each model M , the value RM is the reachability relation
(a.k.a. the transitive closure) of GM . Consider M :

UM = {a, b, c}, GM = {(a, b), (b, a), (c, c)}, RM = {(a, a), (b, b), (c, c), (a, b), (b, a)}

To verify that M |=D DR, we can verify that RM minimally satisfies the Horn
theory DR in M . Alternatively, we can build the induction process of DR in
the context of M and verify that it constructs RM . The following sequence of
elements of R can be derived by iterated rule application:

⟨(a, b), (b, a), (a, a), (b, b), (c, c)⟩

It is well-known that reachability cannot be expressed in FO. 5 6

Example 2.2. A small part of the (infinite) induction process of the definition
DL of Listproduct in the context of the structure M× introduced before is:

⟨([], 1), ([2], 2), ([3, 2], 6), ([5, 3, 2], 30), . . .⟩

Two important theorems follow (no proof provided). Let D be a definition
over vocabulary Σ.

Theorem 2.1. If M ∼=Σ N then M |=D D iff N |=D D.

The following theorem specifies what should be a property of every logic of
definitions: given the universe and values of the parameter undefined symbols,
D uniquely determines the values of its defined symbols.

Theorem 2.2. Every structure interpreting Param(D) has a unique expansion
for the defined symbols that satisfies D.

5Here is a folk proof that “R is the reachability relation of G” is not expressible in FO.
Assume it was expressible in FO, by the FO theory Ψ. Choose new constants A,B, consider
the FO theory Ψ ∪ {R(A,B)} ∪ {ψn|n ∈ N0} where ψn = ¬(∃x1, . . . , xn−1 : G(A, x1) ∧ . . . ∧
G(xi, xi+1) ∧ . . . ∧ G(xn−1, B)) expresses that there is no path of length n from A to B.
This theory is unsatisfiable since it states that B is reachable from A but there are no finite
paths from A to B. Therefore by the compactness theorem it has a finite subset Ω that is
unsatisfiable, which is impossible since clearly, its superset Ψ ∪ {R(A,B)} ∪ Ω is satisfiable.
Indeed, Ω “forbids” only a finite number of lengths of paths from A to B. QED

6Clark completion of a rule set sometimes agrees with its semantics in LD but not for
many inductive rule sets, e.g., DR. For example, adding (a, c), (b, c) to RM yields a model of
the Clark completion in which RM is not the reachability relation.

7

3 Explaining full logic programs

The position of this paper on the declarative reading of logic programs boils
down to the following.

A logic program Π is a theory {H(CF), D} of the logic LD, consisting
of a definition D that defines every predicate in Π and the Herbrand
Axiom H(CF) for a set CF of constants and functors.

It is well-known that each program Π has a unique least Herbrand interpretation
LHMCF (Π), where CF contains (at least) all constant and function symbols in
Π [7]. Let Σ be the set of all symbols in Π and CF .

Theorem 3.1. A structure M satisfies D and H(CF) iff M ∼=Σ LHM
CF (Π). 7

Thus, any Σ-structure M isomorphic with the LHM is also a model of Π,
moreover any extension of suchM with arbitrary values for any set of additional
symbols, is also a model of Π. These are the only models of Π. The satisfaction
relation |=D implements the principle of isomorphism. Importantly, it also im-
plements the natural principle that Π contains no information about symbols
not occurring in Π.

Example 3.1. Taking CF = {|/2} for the member program results in an in-
consistent H(CF). But, for any extended CF with at least one constant, this
program determines the correct membership relation within the intended uni-
verse. All predicates other than member are unconstrained by it.

Example 3.2. A homework problem commonly given early in introductory Pro-
log courses is to define family relationships, such as sibling, grandparent, or an-
cestor, using just a binary child of relation, and to test it using the student’s
own family. To define sibling, a student may submit:

sibling(X,Y) :- child_of(X,P), child_of(Y,P), X \== Y.

child_of(tessa,david).

child_of(jonah,david).

The LHM is the unique state of affairs that the student had in mind. The
universe is as described by H({tessa, jonah, david}). The definition can be
interpreted non-constructively through minimal satisfaction, or constructively
through the induction process which constructs the intended relations in at most
4 steps. The rules can be interpreted as productions in the induction process.
The facts of child of behave, not as a conjunction of true facts, but as an
exhaustive enumeration involving that same set of facts. The rule for sibling

behaves, not as a weak material implication, but as a necessary and sufficient
condition to be a sibling.

7This theorem reassures us that the LHM semantics is correct as a model semantics for
LD. Importantly, the original paper [7] that introduced LHM did not mention definitions and
presented the LHM as the denotation of the Horn theory, the set of entailed atomic formulas.

8

4 Explaining components of logic programs

The previous section defines a program Π as consisting of two modules only:
D and H(CF). A program can be large and complex, in which case it may
really only be understood by its programmer(s) in a piecemeal way. Therefore,
a large program must be able to be split into a collection of natural, meaning-
ful components which the programmer understands, and develops more or less
independently of each other. The definitional view shines bright light on this.

Taking the constructive view of definitions, rules are to be viewed as pro-
ductions in the induction process. We define predicates by describing how their
values must be constructed from the values of parameters. The basic operations
are bottom-up execution of the rules. As such, single rules are not truth func-
tional expressions. Satisfaction of a rule in a structure is not defined. Of course
a rule entails a material implication, but this captures only a small bit of how
to understand it.

This leads us to the following question: what are the least components of
logic programs for which it makes sense to ask the question: when is it true,
when is it false? It is not the rule, that much is clear.

The “formulas” of the logic, the basic truth functional components of a
program are its (sub)definitions, i.e., rule subsets of D that define one or more
predicates. Take the family program of Example 3.2. To the programmer, the
program clearly consists of three components: the (implicit) Herbrand Axiom,
and the definitions of child of and of sibling. The first definition defines
child of by exhaustive enumeration and contains no knowledge of sibling.
The second defines sibling in terms of the parameter child of and contains
no knowledge of the value of this parameter.

Not every partition D1, . . . , Dn of D yields a sensible modularization in sub-
definitions of it. A subdefinition Di that defines one or more predicates, should
contain all rules ofD involved in the induction process of these predicates. Thus,
formally, a component definition Di of D should contain all rules of D with the
same predicates in the head. For the same reason, if two or more predicates
are defined by simultaneous induction, their rules should not be spread out over
multiple subdefinitions but be concentrated in one definition; otherwise, the in-
duction process cannot be computed. Thus, there should not be cycles in the
dependency relation over multiple subdefinitions. In summary, the definitional
view on logic programming suggests that a program Π can be naturally split in
modules D1, . . . , Dn,H(CF), such that each predicate is defined in exactly one
module Di and there are no cycles in the dependency relation involving predi-
cates defined in different modules. The following theorem proves the correctness
of this hypothesis.

Theorem 4.1. For every structure M interpreting all symbols of Π and CF ,
the following statements are equivalent:

1. M ∼=ΣD
LHMCF (Π)

2. M satisfies D and H(CF));

9

3. M satisfies D1, . . . , Dn and H(CF)).

A proof of this theorem can be found in [3]. The theorem says that Π is
logically equivalent to H(CF) and the conjunction of the definitions D1, . . . , Dn.
This indeed shows that a programmer can develop such modules Di and reason
with them independently of each other.

5 Negation

The nature of negation (as failure) is probably the most troubling question in
the history of Logic Programming.8 For 50 years now, the general conviction
is that the negation not in Prolog cannot be classical negation ¬. Where does
that idea come from? It comes from the fact that Horn theories do not entail
the falsity of atoms. E.g., consider the query

?- member(0,[1,2,3])

no

The answer “no” expresses that the member Horn logic theory does not entail
the truth of member(0,[1,2,3]) but neither does it entail its falsity. As a
consequence, Prolog would be unsound if in the following query, the symbol not
is interpreted as classical negation ¬:

?- not member(0,[1,2,3])

yes

This is the first and main reason why not is believed to be non-classical negation.
But the definitional view sheds a completely different light on the issue.

Definitions augmented with the Herbrand Axiom do indeed semantically entail
the falsity of many defined atomic facts. In particular, since the LHM is the
unique model (modulo isomorphism), any defined atom A that is false in the
LHM is false in every model. Therefore, this theory semantically entails the
truth of the classically negated fact ¬A. In particular, member(0,[1,2,3])
is false in every structure that satisfies the member program (as defined in
this paper), and hence, ¬member(0,[1,2,3]) is semantically entailed by the
program.

And so, in the following procedure compress/2 which removes duplicates in
a list, not can and should be interpreted as classical negation ¬:

compress([],[]).

compress([X|T],[X|T1]) :- compress(T,T1), not member(X,T1).

compress([X|T],T1) :- compress(T,T1), member(X,T1).

8The LP community seems much less worried about the nature of the rule operator, while
for more than hundred years, the logic science knows there are considerable troubles with
material implication.

10

The resulting program (defining compress and member) is a stratified program.
Stratification is also a natural principle of great importance in mathematics

and science: it is the principle that once a concept is well-defined, it can be used
to define new concepts in terms of it. It is a key building principle of science.
Mathematical logicians have studied infinite, even transfinite stratified stacks of
definitions, called iterated inductive definitions [5, 6]. The well-known principle
of definition by structural induction is an instance of this [4]. In [2, 3, 4], it was
argued that the well-founded semantics implements a semantic stratification
principle, and that logic programs under this semantics can be viewed as a
finite description of this type of definition.

To conclude, the definitional view on logic programs sheds a different light
on the nature of language constructs: negation as failure is indeed classical
negation! It is the rule operator that is non-classical: much stronger than a
material implication, it is a production operator in the induction process.

We conclude by noting that we have realized the four goals put forward in
the Introduction.

References

[1] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland Publishing
Company, 1977.

[2] Marc Denecker, Maurice Bruynooghe, and Victor Marek. Logic program-
ming revisited: Logic programs as inductive definitions. ACM Trans. Com-
put. Log., 2(4):623–654, 2001.

[3] Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive
definitions. ACM Trans. Comput. Log., 9(2):14:1–14:52, April 2008.

[4] Marc Denecker and Joost Vennekens. The well-founded semantics is the
principle of inductive definition, revisited. In Chitta Baral, Giuseppe De
Giacomo, and Thomas Eiter, editors, KR, pages 1–10. AAAI Press, 2014.

[5] Solomon Feferman. Formal theories for transfinite iterations of generalised
inductive definitions and some subsystems of analysis. In A. Kino, J. My-
hill, and R.E. Vesley, editors, Intuitionism and Proof theory, pages 303–326.
North Holland, 1970.

[6] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive
definitions. In J.E. Fenstad, editor, Second Scandinavian Logic Symposium,
pages 179–216, 1971.

[7] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate
logic as a programming language. J. ACM, 23(4):733–742, 1976.

11

