Join Ordering for Constraint Handling Rules

Leslie De Koninck and Jon Sneyers
K.U.Leuven, Belgium

CHR Workshop
September 2007
Introduction

- CHR
- The problem
- Significance
- Approach

Cost model

- Static approximations
- Dynamic approximations

Optimization

- Join graphs
- Acyclic join graphs
- Cyclic join graphs

Conclusion
- High-level language extension (of Prolog/Java/C/...)
- Multi-headed committed-choice guarded rewrite rules
- Originally: designed for writing constraint solvers
- Increasingly: general-purpose programming language

- Refined operational semantics [Duck et al 2004]:
 - activate constraints depth-first, left-to-right
 - search for matching rules by trying occurrences in textual order
The join ordering problem

- **Join**: finding matching partners for a given active occurrence
 - common approach: nested loops
 - using indexes to take equality guards into account
- **Ordering**: finding a (good) order in which to do the lookups
- E.g. consider the active occurrence `part/2` in the rule `part(A,I), delta(T,A,X), a(A,I,X) \ b(J,T) <= b'(J,T).`
 3 partner constraints, so $3! = 6$ possible join orders:

```plaintext
foreach(delta(T,A,X)) {
  foreach(a(A,I,X)) {
    foreach(b(J,T)) {
      call(b'(J,T))
    }
  }
}
```

```plaintext
foreach(a(A,I,X)) {
  foreach(delta(T,A,X)) {
    foreach(b(J,T)) {
      call(b'(J,T))
    }
  }
}
```

```plaintext
foreach(b(J,T)) {
  foreach(delta(T,A,X)) {
    foreach(a(A,I,X)) {
      call(b'(J,T))
    }
  }
}
```

...
Early CHR systems allowed only single and two-headed rules at most 1 partner constraint, so nothing to order.

Hence, old CHR programs (e.g. 1eq) use at most 2 heads.

More recent programs have more heads:

<table>
<thead>
<tr>
<th>Name</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU Car Rental</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Hopcroft</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Monkey & Bananas</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>RAM Simulator</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Timed Automaton</td>
<td></td>
<td>11</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Type Inference</td>
<td>26</td>
<td>48</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>Well-founded Semantics</td>
<td>3</td>
<td>25</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>106</td>
<td>55</td>
<td>26</td>
<td>9</td>
<td>2</td>
<td>244</td>
</tr>
</tbody>
</table>
Why care about join order?
Wrong join order often means wrong time complexity!

Why not just leave it to the programmer? (and simply use textual order)

- Programmer should not worry about "low-level" details
- Multi-headed rules may have many active occurrences, so there is not always a way to arrange the heads such that textual order is optimal
- Sometimes the optimal order depends on dynamic properties of the store
Current implementations do static join ordering based on ad-hoc heuristics

We propose a more precise cost model

We also consider dynamic join ordering

Typical information/time conflict:
 ▶ Statically (at compile time) we can spend much time on finding the optimal order, but we have little information
 ▶ Dynamically (at runtime) we have all information, but no time

However, in some cases there is no single optimal join order, so dynamic ordering is needed to obtain correct complexity
Overview

1 Introduction
 - CHR
 - The problem
 - Significance
 - Approach

2 Cost model
 - Static approximations
 - Dynamic approximations

3 Optimization
 - Join graphs
 - Acyclic join graphs
 - Cyclic join graphs

4 Conclusion
1 Introduction
 - CHR
 - The problem
 - Significance
 - Approach

2 Cost model
 - Static approximations
 - Dynamic approximations

3 Optimization
 - Join graphs
 - Acyclic join graphs
 - Cyclic join graphs

4 Conclusion

Leslie De Koninck and Jon Sneyers
Join Ordering for CHR
Most rules have many implicit guards: e.g.
\[\text{part}(A, I), \ \text{delta}(T, A_1, X), \ \text{a}(A_2, I_2, X_2) \ \backslash \ b(J, T) \]
\[\iff A = A_1, A = A_2, I = I_2, X = X_2, T = T_2 \ | \ b'(J, T). \]

Using indexes on (combinations of) constraint arguments, we find constraints satisfying these equality guards in constant time (amortized, w.h.p.).

In general: guard \(G = G_{\text{eq}} \land G_{\star} \), where
- partners satisfying the a priori guard \(G_{\text{eq}} \) can be found instantly (thanks to indexing)
 - current implementations: only equality guards
 - could add e.g. comparison guards like \(\leq \) using search trees
- to find partners satisfying the a posteriori guard \(G_{\star} \), you need to explicitly test all candidates
Total cost of a join is the sum of the a priori sizes of the partial joins:

\[
\sum_{j=1}^{n} \prod_{k=1}^{j} (\sigma_{\star}(k - 1) \cdot \sigma_{eq}(k) \cdot \mu(k))
\]

- \(\sigma_{eq}(k)\) is the chance that the \(k\)-th a priori lookup succeeds (finds at least one matching partner)
- \(\mu(k)\) is the average number of results for succeeding a priori lookups of the \(k\)-th partner ("multiplicity")
- \(\sigma_{\star}(k)\) is the chance that the a posteriori guard is satisfied for the \(k\)-th partner (given that the a priori guard holds)
To compute the exact values of $\sigma_{eq}(k), \mu(k), \sigma_*(k)$, you have to do the join
\implies much too expensive dynamically, impossible statically

Hence: heuristics!

Trivial bounds:

\begin{align*}
0 & \leq \sigma_{eq}(k) \leq 1 \\
0 & \leq \sigma_*(k) \leq 1 \\
1 & \leq \mu(k) \leq |\text{store of } k\text{-th head}|
\end{align*}
Static approximations

- $\sigma_{eq}(k)$: use upper bound 1
- $\mu(k)$:
 - if there are functional dependencies [Duck and Schrijvers 2005], we can statically derive $\mu(k) = 1$
 - otherwise: heuristic based on degrees of freedom
- $\sigma_*(k)$: ± arbitrary heuristic, e.g.:
 - 1 if G^k_* is empty (true)
 - 0.5 if G^k_* is a comparison ($<, \leq, \geq, >$)
 - 0.25 if G^k_* is an arithmetic equality ($=:=$)
 - 0.95 if G^k_* is an inequality ($\text{\textbackslash}=, \text{\textbackslash}==$)
 - 0.75 otherwise
 - if G^k_* is a conjunction, multiply these numbers
Dynamic approximations

- Worst-case bounds:
 - $\sigma_{eq}(k), \sigma_*(k)$: use upper bound 1
 - $\mu(k)$: maintain the maximal number of results per lookup key (e.g. for hash tables: the maximal bucket size)

- Approximations:
 - $\mu(k)$: maintain the average number of results per lookup key
 - $\sigma_*(k)$: as in static case, or maintain success rate of a posteriori guards
 - $\sigma_{eq}(k)$: maintain number of distinct keys and size of key domain; the ratio of these numbers is a reasonable estimate assuming keys are randomly sampled

- Hybrid approach: optimize weighted sum, e.g.

$$[\text{approximation}] + 0.05[\text{worst-case bound}]$$
1 Introduction
- CHR
- The problem
- Significance
- Approach

2 Cost model
- Static approximations
- Dynamic approximations

3 Optimization
- Join graphs
- Acyclic join graphs
- Cyclic join graphs

4 Conclusion
part(A,I), delta(T,A,X), a(A,I,X) \ b(J,T)
<= b'(J,T).

prog(L,imov,B,A),
mem(B,C), mem(C,X)
\ mem(A,_,), pc(L)
<= mem(A,X), pc(L+1).
- There is an $O(n \log n)$ algorithm [Krishnamurthy et al, 1986] to find the optimal join order, under these assumptions:
 - The join graph is acyclic, so we can consider it to be a tree rooted in the active constraint
 - The optimal order respects the tree order (lookup parent before child)
 - Representative selection
For general join graphs, the optimization problem is NP-complete [Ibaraki and Kameda, 1984]

Still, n is usually small (< 10), so exponential dynamic programming algorithms may be OK

Could also construct (multiple) spanning tree(s) and run the acyclic algorithm

Some special cases of cyclicity (e.g. some cliques) can be eliminated
 - See paper
 - 39 out of 49 cyclic join graphs could be made acyclic
Introduction
- CHR
- The problem
- Significance
- Approach

Cost model
- Static approximations
- Dynamic approximations

Optimization
- Join graphs
- Acyclic join graphs
- Cyclic join graphs

Conclusion
Conclusion: contributions

- More realistic cost model
- Also consider runtime information; dynamic join ordering
- Static and dynamic cost approximations
- Efficient join order optimization algorithm for acyclic graphs (ported from the database literature to CHR)
- Elimination of some types of cycles in join graphs
- First-few answers (simplification rules) vs all answers (propagation rules) (see paper)
Future work

- Theorems & proofs
- Implementation, experimental evaluation
- Join ordering in parallel
- Hybrid between static and dynamic
- Trade-off between optimization cost and join cost
- Profiling for static ordering
- Other ways to eliminate cycles in join graphs
Questions?