On the use of Threads in Mobile Object Systems

Tim Coninx, Eddy Truyen, Bart Vanhaute, Yolande Berbers,
Wouter Joosen and Pierre Verbaeten

KULeuven Department of Computer Science
Celestijnenlaan 200A
B-3001 Leuven, Belgium
{tim,eddy,bartvh,yolande,wouter,pv}@Qcs.kuleuven.ac.be

Abstract

We have developed a portable mechanism for transparent thread
migration in Java. This thread migration mechanism is implemented
by instrumenting the original application code through a bytecode
transformer without modifying the Java Virtual Machine.

In this paper we examine how this thread state capturing mecha-
nism can be extended such that JVM thread semantics can be main-
tained in mobile object systems.

1 Introduction and overview

The Java language today is one of the most popular development languages,
and also a topic of many research projects. Java is also often used as a
language to develop mobile agent applications. There are various features
of Java that triggered this evolution. First, in a large number of application
domains, Javas machine-independent byte code has solved a long-lasting
problem known to agent-based systems, namely the fact that agents must
be able to run on heterogeneous platforms. A Java program is compiled
into portable byte code that can execute on any system, as long as a Java
Virtual Machine (JVM) is installed on that system. Nowadays, JVMs are
running on systems with different hardware and system software character-
istics (ranging from off-the-shelf PCs to Smart Cards). Second, byte code
can be downloaded whenever necessary by means of the customizable Java
class loading mechanism [LB98]. This flattens the way for supporting code
mobility. Third, The Java security architecture allows construction of safe
agent execution environments [SBH97]. Fourth, Sun’s powerful serialization
mechanism allows transparent migration of Java objects (i.e. the contents
of instance variables), making object state mobility possible.

However, as a disadvantage, when an object is to be serialized, the ex-
ecution state of threads that are active in this object is lost, leading to
inconsistencies.

We implemented a mechanism that supports transparent thread migra-
tion [TRVT00]. Using this mechanism, we allow the execution state of a
thread to be captured before migration, and to be reestablished at the target
location after migration. Furthermore, when the trace crosses host bound-
aries, the thread will be split up into different threads that are connected
using an object request broker like RMI [Sun97]. These splitup threads form
one distributed tasks.

First we will explain transparent thread migration, the technology that
makes distributed tasks possible. Then we will show an example conversion
of a normal thread to a distributed task. Finally, we point out two possi-
ble fields of direct use, namely distributed locks and distributed application
partitioning.

2 Transparent Thread Migration

The main technique which is going to be used is transparent thread migra-
tion, as presented in [TRVT00]. In order to migrate a thread, its execution
must be suspended and its Java stack and program counter must be cap-
tured in a serializable format that is then sent to the target location. At the
target location, the stack must be reestablished and the program counter
must be set to the old code position. Finally the thread must be rescheduled
for execution.

This is called transparent thread migration. We implemented this thread
serialization mechanism by extracting the state of a running thread from the
application code that is running in that thread. To achieve this, a byte code
transformer instruments the application code by inserting code blocks that
do the actual capturing en reestablishing of the current thread’s state. This
makes that our thread migration mechanism is portable across standard
JVM platforms.

In order to deploy this thread serialization mechanism practically for
migration, we offer tasks, a complement to JVM threads. A task encapsu-
lates the JVM thread that is used for executing that task. As such, a task’s
execution state is the execution state of a JVM thread in which the task is
running.

A task is serializable at any execution point, making transparent thread
migration possible. Each task is associated with a separate Contezt object
into which its execution state is captured, and from which its execution
state is later reestablished. Finally, each task is associated with a number
of boolean flags that represent a specific execution mode of the task. A task
can be in three different modes of execution: running (normal execution),
capturing (before serialization) and restoring (after deserialization).

Whenever a task enters capturing state (its capturing flag is set), the
current method returns after saving its stack frame, like on figure 1. The

inserted bytecode causes every method to check this capturing flag. When
set, the method will first save its stack frame and its last performed invoke-
instruction (LPT), and immediatly return. This will continue until the thread
is back where it started. At that time, the task’s context contains the whole
trace the thread followed.

public class A {
private B b = new B(...);
public void myMethod() calling method
{
intl=0;
javautil.Date today = ...;
Vector v = new Vector();
if(.){
boolean test = false;
if isCapturing() { ®———————
store stackframe into context
storte artificial PC as LP1—index
return;

y o }

}
LPI —>} intk =5* b.computeSerial (today);

public class B { go to previous sfack frame

public int computeSerial(Date date) top frame's method
{

if isCapturing() {

store stackframe into context
storte artificial PC as LPI—index
return;

LPI 9 Task.captureCurrentTask();

return ...;
' }
}
}

Figure 1: State Capturing

When a task has to be restored (figure 2), a new thread is started from
the task (its restoring flag is set). The first stackframe is restored, and
the LPI is checked to know which method was the next the task was in.
Due to the inserted bytecode, each method restores the next stackframe,
and checks the LPI for which method next to invoke. When the thread
ultimatly reaches the method that started capturing, the restoring flag is
unset, and the thread continues like nothing happened.

3 Distributed Tasks

3.1 The Problem

Figure 3 shows an example of a thread executing in four objects. Suppose
now we would like to migrate object C. Normally, in order to have safe mi-
gration, we should wait until the object has become passive. However, using

if isRestoring() {
get LPI from context

itch (LPI
public class A { SW'_‘C_ (tPh{

private B b = new B(...);

public void myMethod() case invoke computeSerial:

{ —~ load stackframe;
intl=0; goto invoke computeSeriak———
java.util.Date today = ...; case ... :

Vector v = new Vector();
if(...) { }

boolean test = false; i

go to next|stackframe

}
LPl — intk =5 * b.computeSerial(today);
}

y (if isRestoring() { &
get LPI from context
public class B { switch (LPI) {
public int computeSerial(Date date) case invoke computeSerial:
{ — load stackframe;
goto invoke computeSerial;
case ...:
LPl — Task.captureCurrentTask(); }
S

return ...;

}
1

Figure 2: State Reestablishment

the techniques shown in section 2, we can serialize the executing thread,
together with the objects, to begin migration much sooner.

When object C wants to migrate, the current task must be stopped, and
its capturing flag is set. The running thread is being serialized before actual
serialization of object C. In order to realize this, we need to keep record of
the threads that are active in this object. Additional bytecode inserted at
the start of each method invocation can ensure we have this information at
hand.

During reestablishment, the task is split into three subtasks that are
each assigned a separate JVM thread. B’s call to C, and C’s call to D are
each converted into a remote method call. Although the three subtasks are
executing on two different JVM’s, like in figure 3, from a logical point of
view they still belong to the same task. This introduces the notion of a
distributed task that defines a global thread identifier, logically uniting the
three subtasks. Looking at the call stack of the thread, we see it gets broken
up into three callstacks, like in figure 4. These three callstacks form one
logical whole.

When during reestablishment of the thread, an object reference is to be
restored on the operand stack frame, there are two possibilities:

1. The object referenced to is present on the current host, so the reference

)
i
i
I
i
i
i
\
i
\
i
i
i

Stubs *Ié

After migration of C

Figure 3: a thread in exectution, when C is migrated

D 7>
C
B B
A A C D
Host 1 w
1 Thread 1 Distributed Task

Figure 4: splitting up the callstack

is restored without further consideration.

2. The object referenced to is not present on the current host. The ob-
ject’s stub is looked up, and the reference is replaced by a reference to
the stub.

4 Discussion

4.1 Distributed locks

Suppose we have two classes, like shown in figure 5. Class A has its method
synchronised, which means there can be at most one thread executing the
method. However, the thread is granted access for a second time, because
it is easily verified it is the same thread executing.

We have a problem when we would like to migrate object B. Because we
have a distributed task, in reality there is a second thread trying to access the
synchronised method of A. The object doesn’t recognise the second thread

foo
—
foo
Class A{ Class B {
Synchronised void foo() { void bar() {
) B.bar();) A.foo();
} }

Figure 5: locked method

as being of the same distributed task.

A solution for this problem consists of giving each distributed task a
global thread identifier. Before access to the method is being denied, the
thread’s global thread identifier is checked, and possible deadlock is avoided.

4.2 Partitioning of distributed object applications

Proper placement of software components onto different hosts is critical
to the performance of distributed applications. This is particularly true
for object-oriented distributed applications, as the starting point is a large
population of fine-grained objects. This pool of objects must first be par-
titioned, before assignment can take place. The primary consideration in
object placement is that it must minimize the amount of communication
over the network [KRR198].

Methods for automated partitioning exist, and employ a graph-based
model of the application being paritioned. However, an open question is if
these methods can be adapted to be applied at any point in an on-going
distributed computation. Qur mechanism of distributed tasks now provides
a way to do this partitioning at run-time.

We illustrate this by an example system were two partitions are identi-
fied. At some point, the second partition is migrated while a thread is still
active in both partitions. After migration (figure 6), the shared thread is
converted to a distributed task, which still connects the two partitions over
host boundaries.

5 Related Work

The Sumatra Project [ARS97] aims to support resource-aware mobile pro-
grams in Java. It does so by adding programming abstractions to Java.

Host Boundary

Thread B
Thread A '

Partition 1

Figure 6: A partitioned application after migration

The application programmer can use these abstractions to write mobile pro-
grams. Sumatra does a very good job at managing resources that might be
in use by objects that are about to move, something our proposal does not
(yet) address. However, The programming abstractions are implemented
as native methods on a unix system, as resource management is done by a
system profiling service. Herefore, Sumatra is not as portable as one wants
it to be.

Work from Jon Howell [How99] shows how to reach Java persistence
through checkpointing. This is done by an extension of the JVM that first
analyses the classfiles to set up checkpoints. At these checkpoints, the pro-
gram state may be saved and later restored. This technique also deals very
well with resources in use by the program, for example files and communi-
cation links. On the other hand, the checkpointing information is located
in a flat, platform dependent file. So an object must always stay within the
same platform.

The FarGo Project [HBSGY99] introduces a model for programming the
layout of distributed applications separately from their basic logic, by at-
taching relocation semantics to inter-component references, and by using
built-in monitoring support for making relocation decisions. Like our pro-
posal, FarGo offers complete location transparency and in addition gives
portable monitoring support. The only disadvantage of FarGo is it only
supports weak mobility, which means that the stack and program counter
do not move, only the object states.

Besides these, many more projects relating to the use of threads in mo-
bile object systems exist. Some older solutions are the Diamonds system
[BCST93] and the Emerald system [JLH'88]. Both systems are however
not intended for Java.

6 Conclusions and Future Work

In this paper we presented a way how the technique of transparent thread
migration can be used to introduce distributed tasks. Hereby, migrating
objects is made possible to occur while threads are executing in those ob-
jects. Two possible fields of use, distributed locks and distributed object
partitioning were also showed.

Looking at the related work, we have to admit our work is still very
experimental, and hasn’t yet dealt with issues like resource management.
Also, while the technique of applying bytecode is a very useful one, we have
to take care it doesn’t go out of control. First by not adding too much, so it
causes size blowups. Second by not applying it wrongly so normal program
flow is corrupted.

Future work will consist mainly of creating a mobility framework that
uses distributed tasks.

References

[ARS97] Anurag Acharya, M. Ranganathan, and Joel Saltz. Resource-
aware meta-computing, March 1997.

[BCST93] Umesh Bellur, Gary Craig, Kevin Shank, et al. Diamonds: Prin-
ciples and philosophy. Technical report, Dept. of Electrical and
Computer Engineering, Syracuse University, June 1993.

[HBSGY99] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. System sup-
port for dynamic layout of distributed applications. Technical
report, Dept. of Electrical Engineering, Technion — Israel Insti-
tute of Technology, 1999.

[How99] Jon Howell. Straightforward java persistence through check-
pointing. In Ron Morrison, Mick Jordan, and Malcom Atkinson,
editors, Advances in Persistent Object Systems, pages 322-334.
1999. URL: http://www.cs.dartmouth.edu/ jonh/research/.

[JLH*88] Eric Jul, Henry Levy, Norman Hutchinson, et al. Fine-grained
mobility in the emerald system, 1988.

[KRR198] Doug Kimelman, V.T. Rajan, Tova Roth, et al. Partitioning
and assignment of distributed object applications incorporating
object replication and caching. In Proceedings of ECOOP 98,
June 1998.

[LB9g] S. Liang and G. Bracha. Dynamic class loading in the java virtual
machine. In Proceedings of the Conference on Object-Oriented
Technologies and Systems, pages 36—44, April 1998.

[SBH97] M. Strasser, J. Baumann, and F. Hohl. Mole — a java based
mobile agent system. In M. Miihlhauser, editor, Special Issues
in Object Oriented Programming, pages 301-308. 1997.

[Sun97] Sun Microsystems, Inc. Java Remote Method Invokation Speci-
fication, 1997. Java 1.2.

[TRV*00] Eddy Truyen, Bert Robben, Bart Vanhaute, et al. Portable sup-
port for transparent thread migration in java, 2000. Submitted
to AM2000.

