
Hi-Lite
Combining Formal Program Verification and Testing

Valentine Reboul

2013-Feb-4

1 / 41

The Hi-Lite Project

”High Integrity Lint Integrated with Testing and Execution”

Research project :

I based on OpenSource software

I involving various industrial and academic partners:
Altran, Astrium Space Transportation, CEA-LIST, the ProVal
team of INRIA, Thales Communications and AdaCore

I aiming at popularizing formal methods and providing modular
and lite-to-use tools

2 / 41

On a simple example:
a Ring Buffer

3 / 41

A Ring Buffer: Data

1 type Buf_Array is array (0 . . Buf_Size − 1)
2 of Integer ;
3 −− The a r r a y which s t o r e s th e b u f f e r
4
5 type Ring_Buffer is record

6 Data : Buf_Array ;
7 First : Integer := 0 ;
8 Length : Integer := 0 ;
9 end record ;

10 −− The r e c o r d r e p r e s e n t i n g t he b u f f e r .
11 −− F i r s t i s th e f i r s t c e l l c o n t a i n i n g v a l i d data .
12 −− Length i s th e number o f s t o r e d i t e m s .
13 −− Wrapping around th e a r r a y b o r d e r s i s p o s s i b l e .
14 −− The f i e l d Length i s between 0 and B u f S i z e .
15 −− The f i e l d F i r s t i s a l w a y s a v a l i d a r r a y index ,
16 −− hence between 0 and B u f S i z e − 1 .

4 / 41

A Ring Buffer: API

18 function Is_Empty (R : Ring_Buffer)
19 return Boolean ;
20 −− Check whether t he b u f f e r i s empty
21
22 function Head (R : in Ring_Buffer)
23 return Integer ;
24 −− Return th e f i r s t e l em en t o f t he b u f f e r
25
26 procedure Pop (R : in out Ring_Buffer ;
27 Element : out Integer) ;
28 −− Return th e f i r s t e l em en t o f t he b u f f e r ,
29 −− and remove i t from t he b u f f e r .
30 −− The b u f f e r s h o u l d not be empty .
31 −− The l e n g t h o f th e b u f f e r i s d e c r e a s e d by one .

5 / 41

Can we do better in Ada
?

6 / 41

Strong typing

1 type Length_Type is new Integer

2 range 0 . . Buf_Size ;
3 −− The i n t e g e r t y p e o f b u f f e r l e n g t h
4
5 subtype Index_Type is Length_Type

6 range 0 . . Length_Type ’ Last − 1 ;
7 −− The i n t e g e r t y p e f o r v a l i d a r r a y i n d i c e s .
8
9 type Buf_Array is array (Index_Type) of Integer ;

10
11 type Ring_Buffer is record

12 Data : Buf_Array ;
13 First : Index_Type := 0 ;
14 Length : Length_Type := 0 ;
15 end record ;

7 / 41

Can we do better in Ada 2012
?

8 / 41

Expression Functions

Expression functions completely define simple getters in the
specifications

17 function Is_Empty (R : Ring_Buffer)
18 return Boolean

19 is (R . Length = 0) ;
20 −− Check whether t he b u f f e r i s empty
21
22 function Head (R : in Ring_Buffer)
23 return Integer

24 is (R . Data (R . First)) ;
25 −− Return th e f i r s t e l em en t o f t he b u f f e r

9 / 41

Introducing contracts

Contracts define the interface between a subprogram and its caller

27 procedure Pop (R : in out Ring_Buffer ;
28 Element : out Integer)
29 with

30 Pre => not Is_Empty (R) ,
31 Post => not Is_Full (R) and then

32 R . Length = R . Length ’ Old − 1 and then

33 Element = Head (R ’ Old) ;
34 −− Remove t he r e t u r n e d e l em en t from th e b u f f e r .

10 / 41

What if a contract is violated?

Contracts (Ada 2012) behave like Assertions (Ada 2005)

A violation at Run-Time raises a Run-Time exception.

ex: Pop is passed an empty ring

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :

failed precondition from ring_buf.ads:53

ex: Pop implementation is faulty

raised SYSTEM.ASSERTIONS.ASSERT_FAILURE :

failed postcondition from ring_buf.ads:55

11 / 41

What about static verification
?

12 / 41

The Compiler

The Compiler is limited in its checks:
I must run quickly → imprecise analysis
I can detect obvious errors

1 procedure P (X : in Integer)
2 with

3 Post => X >= 0 ;

The post-condition refers only to pre-state

1 function F (X : in Integer) return Boolean

2 with

3 Post => X >= 0 ;

The post-condition of a function does not mention result

(F’Result)

13 / 41

The Verifier (1/2)

A new tool is required: The Verifier
It will perform:

I precise analysis → longer than compilation

I scalable analysis → modular, based on contracts

I can detect subtle errors

ring_buf.adb:19:26: range check not proved

ring_buf.ads:56:21: postcondition not proved

14 / 41

The Verifier (2/2)

the Verifier checks:

I all possible run-time errors

I all user properties (assertions, contracts, invariants)

The Verifier can give complete guarantees:

ring_buf.ads:37:18: info: postcondition proved

ring_buf.adb:11:36: info: division check proved

ring_buf.adb:12:28: info: range check proved

ring_buf.ads:48:48: info: postcondition proved

ring_buf.adb:19:32: info: division check proved

ring_buf.adb:20:28: info: range check proved

ring_buf.ads:56:21: info: postcondition proved

ring_buf.ads:56:23: info: precondition proved

15 / 41

How does automatic proof
work

?

16 / 41

Verification Conditions

Mechanism:
The Verifier generates specific logical formulas thanks to a
generation tool and uses a prover to verify them

Those logical formulas are called: Verification Conditions

They have strong mathematical origins:

I based on Hoare logics (1969) - {P}C{Q}
I automated by Dijkstra’s calculus (1975)

I further automated by Filliâtre’s effect computation (1996)

I made more efficient by Leino’s calculus (2005)

17 / 41

An example of generated VC

ring buf.ads 56 21 postcondition.why generated with WHY:

[...]

type length_type

logic to_int1 : length_type -> int

axiom range_axiom1 : (forall x:length_type. in_range1(to_int1(x)))

goal WP_parameter_def :

(forall r:content map. forall r1:int. forall r2:index_type.

forall r3:length_type. forall element:content. forall r4:content map.

forall r5:int. forall r6:index_type. forall r7:length_type.

forall r8:content map. forall r9:int. forall r10:index_type.

forall r11:length_type. ((not (is_empty(mk_ring_buffer(mk_buf_array(r, r1),

r2, r3)) = true)) -> (((((((r4 = r8) and (r5 = r9)) and (r6 = r10)) and

(of_int1((to_int1(r7) - 1)) = r11)) and ((((r = r4) and (r1 = r5)) and

(of_int2(((to_int2(r2) + 1) % 10000)) = r6)) and (r3 = r7))) and

(element = get(r, ((to_int2(r2) + r1) - 0)))) ->

((not (is_full(mk_ring_buffer(mk_buf_array(r8, r9), r10, r11)) = true)) and

((to_int1(r11) = (to_int1(r3) - 1)) and

(to_int(element) = to_int(head(mk_ring_buffer(mk_buf_array(r, r1), r2,

r3)))))))))

18 / 41

Mechanism

Each VC is proved separately by calling an SMT prover
(alt-ergo):

> alt-ergo ring_buf.ads_56_21_postcondition.why

< Valid

SMT = Satisfiability Modulo Theories

19 / 41

What if a VC is not proved
?

20 / 41

Unproved VCs

Various possible causes:

1. Code is incorrect

2. Assertion is incorrect

3. Missing assertions about program behavior

4. Prover timeouts

5. Prover is not smart enough

Methodology to investigate unproved VCs:

I Investigate causes from easier to harder

21 / 41

Investigate incorrect code and/or assertion

Both code and assertions can be executed

The Compiler and the Verifier fully agree on meaning of assertions

→ code and assertions can be tested and debugged

checks enabled by compiler switches:

I -gnata: run-time checking of assertions

I -gnato: run-time checking of intermediate overflows

22 / 41

Investigate missing assertions

23 / 41

Investigate prover shortcomings

Verifier switches:

I -timeout: increase prover timeout

I -prover: use alternative SMT prover

The verification can be focused:

I on an individual subprogram or line of code

I both on command-line and inside IDE

24 / 41

What to do next?

Traditional fallbacks when automatic proof fails:

I manual review

I hand-written proof (automatically assisted)

Drawbacks:

I require proof & tool expertise

I time consuming and really costly

I maintenance issues

→ New fallback: ... Testing !

25 / 41

Testing and Formal Proof
Combination

?

26 / 41

Testing and formal verification (1/3)

Testing has always been the fallback:

I parts of the code that cannot be formally analyzed

I properties that cannot be formalized

I assumptions needed by formal verification

But no methodology for the combination

27 / 41

Testing and formal verification (2/3)

New combination with a precise methodology:

I subprogram contract captures complete property to verify

I each subprogram is either tested or proved

I testing is done in special mode with additional run-time checks

case 1: when proved subprogram P calls tested subprogram T,
proof depends on correct call result

case 2: when tested subprogram T calls proved subprogram P,
proof depends on correct calling context

28 / 41

Testing and formal verification (3/3)

Special mode of testing needed to check assumptions for proof:

I postcondition of tested function when called in proved

I precondition of proved function when called in tested

I also, initialization of in out parameters

I also, non-aliasing of parameters

Checks enabled by compiler switches:

I -gnata: run-time checking of contracts

I -gnateV: run-time checking of parameter initialization

I -gnateA: run-time checking of parameter non-aliasing

29 / 41

Some help for tests ?

30 / 41

Pragma Test Case

1 pragma Test_Case (
2 [Name =>] static_stringh_Expression

3 , [Mode =>] (Nominal | Robustness)
4 [, Requires => Boolean_Expression]
5 [, Ensures => Boolean_Expression]) ;

1 package Math_Functions is

2 function Sqrt (Arg : Float) return Float ;
3 pragma Test_Case (Name => "Test 1" ,
4 Mode => Nominal ,
5 Requires => Arg < 10000 ,
6 Ensures => Sqrt ’ Result < ←↩

10) ;
7 end Math_Functions ;

31 / 41

GNATtest

Back to the Ring Buffer example:

36 procedure Push (B : in out Ring_Buffer ;
37 E : Element)
38 with Test_Case =>
39 (Name => "Test with empty buffer" ,
40 Mode => Nominal ,
41 Requires => Is_Empty (B) ,
42 Ensures => True) ,
43 Test_Case =>
44 (Name => "Test with not empty buffer" ,
45 Mode => Nominal ,
46 Requires => not Is_Empty (B) ,
47 Ensures => True) ;

32 / 41

Tools and Technolgies

33 / 41

Current practice of formal program verification

Small number of industries using:

I B method (railway)

I CAVEAT for C programs (Airbus)

I SPARK 2005 subset of Ada (avionics, defense, security)

New tools combine static and dynamic analyses:

I Frama-C (successor of CAVEAT)

I SPARK 2014 (subset of Ada 2012)

34 / 41

The Hi-Lite Project at AdaCore

Technologies and tools developed at AdaCore in Hi-Lite scope.

I the compiler GNAT Pro

I the analyzer CodePeer

I the verifier GNATProve
using WHY as VC generator and alt-ergo as SMT prover (but
complete modularity !)

I the test harness creator GNATTest

35 / 41

SPARK 2014 Platform

36 / 41

SPARK 2014 language (1/2)

Completely based off Ada 2012:

I new specification aspects: contracts, invariants

I new expressions: if-expression, case-expression, quantified
expression (for all, for some)

I new attributes: Result, Old

examples:

(if Condition then Expr else Expr)

(for all Index in Range => Boolean_Expression)

subtype Multiple is Natural

with Dynamic_Predicate => Multiple mod 3 = 0;

37 / 41

SPARK 2014 language (2/2)

Main restrictions with respect to Ada:

I functions cannot have side-effects

I no pointers (= access types)

I no aliasing (between references)

I no exceptions

I no tasking

Additional constructs specific to SPARK 2014:

I new aspects: Contract_Cases, Global, Depends

I new pragmas: Loop_Invariant, Loop_Variant

I new attributes: Loop_Entry, Update

38 / 41

SPARK 2014 toolset

Completely based off the compiler frontend:

I produces the AST for compilation and verification

I analyzes all constructs (generics, contracts, etc.)

I puts all the checks in the AST

Notable compiler extensions:

I support for new aspects/pragmas/attributes in SPARK 2014

I 3 overflow checking modes → mathematical contracts

I target parametrization → correct proofs for target

39 / 41

The overflow problem

Example of problem:

I user wants to add two numbers: X + Y

I user wants to assert that addition cannot overflow:
with Pre => X + Y in Integer

I but this expression may overflow itself!

3 overflow checking modes:

I strict mode: normal overflow checks

I minimized mode: larger base type (64bits) used when needed

I eliminated mode: use bignum library in the remaining cases

Flexible solution:

I user chooses between 3 modes

I independent choice for assertions and code

I same choice for execution and formal verification
40 / 41

More information (and code, binaries) on...

http://www.open-do.org/projects/hi-lite/

41 / 41

