
SIAM J. NUMER. ANAL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 47, No. 6, pp. 4326–4355

ON THE FOURIER EXTENSION OF NONPERIODIC FUNCTIONS∗

DAAN HUYBRECHS†

Abstract. We obtain exponentially accurate Fourier series for nonperiodic functions on the
interval [−1, 1] by extending these functions to periodic functions on a larger domain. The series
may be evaluated, but not constructed, by means of the FFT. A complete convergence theory
is given based on orthogonal polynomials that resemble Chebyshev polynomials of the first and
second kinds. We analyze a previously proposed numerical method, which is unstable in theory
but stable in practice. We propose a new numerical method that is stable both in theory and in
practice.
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1. Introduction. Computing a Fourier series by means of the FFT is the ap-
proach of choice for approximating smooth and periodic functions. The method is
stable and well understood, and it yields spectral convergence. The picture changes
completely when the function involved is either not smooth or not periodic, due to the
presence of the well-known Gibbs phenomenon. Symptoms are the lack of pointwise
convergence, the slow decay of the Fourier coefficients, and spurious oscillations near
the points of discontinuity or near the boundaries. Due to the importance of Fourier
series and the FFT, many ways have been devised to circumvent or to ameliorate the
Gibbs phenomenon. We briefly recall three popular possibilities. A first approach is to
filter out the oscillations (see, e.g., [28] and references therein). A second approach is
to introduce a periodizing transformation and to compute the Fourier series of the re-
sulting function; a popular choice of transformation leads to Chebyshev polynomials,
which will be briefly recalled later in this paper. A third approach is to reconstruct a
nonperiodic function from its truncated Fourier series by reexpanding that series into
a basis of Gegenbauer polynomials [17]. Though the truncated Fourier series itself is
an inaccurate approximation suffering from the Gibbs phenomenon, spectral accuracy
can be achieved in the recovery of the nonperiodic function.

All these approaches are successful and well understood. The topic of this paper
is an intriguing alternative approach that has also proved to be successful, but which
has not yet received as much attention in the literature.

Consider a function f ∈ L2
[−1,1] that is not necessarily smooth or periodic. In

this paper we will focus mostly on the lack of periodicity of f , assuming sufficient
smoothness except where noted otherwise. The canonical example is f(x) = x. A
simple idea to obtain a spectrally accurate Fourier series is to extend the function
f to a function g that is periodic on a larger interval, say [−T, T ] with T > 1. If a
suitable smooth and periodic function g exists, then the Fourier series of g converges
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(a) Fourier series of f .
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(b) A smooth and periodic extension of f .

Fig. 1. Illustration of the Fourier series of f(x) = x on [−1, 1] with 10 terms (left panel) and
a smooth extension of f with period 4 rather than period 2 (right panel).

pointwise to the values of g on [−T, T ]. This implies by construction that the Fourier
series also converges pointwise to the values of f on the interval [−1, 1]. The resulting
approximation to f has the interesting property that it is a classical Fourier series:
we may use the FFT to evaluate it. In this paper we will focus on the choice T = 2.
Figure 1 illustrates the Gibbs phenomenon for f(x) = x on [−1, 1] and a smooth
extension of f(x) with period 4 rather than 2.

Note the important distinction between a smooth extension of f , such as the
periodic function g for which we are looking, and the analytic continuation of f in
the sense of complex analysis. The latter is unique, if it exists, and has many inter-
esting properties, but it is in general not periodic on a larger domain and therefore
not of immediate interest to us. This means that, even for analytic f , the func-
tion g is in general only infinitely differentiable and not analytic. This has implica-
tions for the possible convergence rate of the Fourier series of g. The Fourier series
of an infinitely differentiable periodic function with n terms converges superalge-
braically, i.e., faster than any inverse power of n. The Fourier series of an analytic
and periodic function, on the other hand, converges exponentially, i.e., O(e−cn) with
c > 0. One would therefore reasonably expect only superalgebraic convergence in our
setting.

The question of the existence of a suitable function g is quickly settled. Whit-
ney [32] showed that a continuous function on a bounded domain A ⊂ Rd can be
extended to a function that is analytic on Rd \A. This problem was thereafter called
Whitney’s extension problem. Hestenes gave a constructive method for extending
differentiable functions [18]. Recently, Fefferman proved in great generality the exis-
tence of extensions that can be bounded in terms of f in suitable norms [14]. This is
an important issue for numerical stability—loosely speaking, we wish to avoid cases
where g is “large” compared to f—to which we will return in greater detail later
on. Many constructive extension methods have been devised since the Hestenes ex-
tension. Any smooth extension of f can lead to a smooth and periodic extension
using cut-off functions [5, 6]. This leads directly to rapidly converging Fourier se-
ries. The convergence behavior is superalgebraic but not exponential, as expected
since cut-off functions are never analytic. This is not optimal compared to the ap-
proach taken in this paper, which leads to exponential convergence, and we will there-
fore not further pursue the explicit construction of a smooth extension of f in this
manner.
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A simple and useful criterion for finding a suitable function g was explored by
Boyd [4] and by Bruno [7] and Bruno, Han, and Pohlman [8]. These authors proposed
to solve the following optimization problem.1

Problem 1.1. Let Gn be the space of 4-periodic functions of the form

(1.1) g ∈ Gn : g(x) =
a0
2

+

n∑
k=1

ak cos
π

2
kx+ bk sin

π

2
kx.

The Fourier extension of f to the interval [−2, 2] is the solution to the optimization
problem

(1.2) gn := arg min
g∈Gn

‖f − g‖L2
[−1,1]

.

The function gn is found as the closest fit to f on [−1, 1] in a least squares sense.
The authors mentioned above observed experimentally that the solution to this prob-
lem converges rapidly to f pointwise in [−1, 1], including in the endpoints. However,
they also observed that the Fourier coefficients ak and bk of gn may become very
large, resulting in possible loss of precision in computations. Though the numerical
algorithms involved are simple and the results obtained in these references are en-
couraging, the apparent unboundedness of the Fourier coefficients of gn appears to be
problematic.

In this paper, we analyze Problem 1.1 and two approaches for solving it numeri-
cally. We prove existence and uniqueness of the solution. Moreover, we characterize
the solution constructively in terms of two families of orthogonal polynomials that are
related to Chebyshev polynomials of the first and second kinds. We prove that the
solution converges to f at a rate that is bounded independently of f in most cases
but that is exponential rather than superalgebraic.

These results contradict our earlier intuition concerning the convergence rate of
our Fourier series. How can the Fourier series gn converge exponentially if g is not
analytic? The answer to this apparent paradox is the observation that the functions
gn do not converge to a fixed function g. In fact, we will see that the functions gn are
unbounded for increasing n outside the interval [−1, 1].

Unfortunately, this unbounded growth of gn is problematic since it gives rise to
large Fourier coefficients. It is not numerically stable to represent the exact solution in
the form (1.1). We explore two ways to remedy this: by representing the exact solution
in a different form and by representing an approximate solution in the form (1.1).

The exact solution to Problem 1.1 can be computed in a stable manner in a basis
that is related to orthogonal polynomials through a Chebyshev-like transformation.
In a typical Chebyshev approximation, one approximates f(x) in a basis of Chebyshev
polynomials, which is equivalent to approximating the transformed function f(cos θ)
by its Fourier series. Here, the situation is reversed. We approximate f(x) by a Fourier
series and show that this is equivalent to approximating two transformed functions in
a basis of polynomials. This means that in our setting the Fourier series converges to
f itself, not to some transformation of f . This has apparent advantages in resolving

1The problem is called Fourier continuation by Bruno and coworkers [7, 8] and Fourier extension
of the third kind by Boyd in [4]. Fourier extension of the first kind is a problem where f is known
explicitly outside the interval [−1, 1]. Fourier extension of the second kind is a problem where f is
also known outside [−1, 1] but has singularities there. Similar ideas have appeared in the context of
embedded domain methods for PDEs (e.g., [13]). We refer the reader to references in [4].



ON THE FOURIER EXTENSION OF NONPERIODIC FUNCTIONS 4329

oscillations when approximating oscillatory functions: the oscillations are not warped
by a transformation.

The second remedy is computing an approximate solution to Problem 1.1 in the
form (1.1). Numerical least squares methods were previously used for this problem
in [4, 7, 8] and are surprisingly effective. We show that a simple numerical method for
solving Problem 1.1 actually yields bounded Fourier coefficients. In fact, the l2-norm
of the coefficients converges to the optimal value 1√

2
‖f‖L2

[−1,1]
. This is, of course, not

the exact solution anymore since that solution would be unbounded. However, the
computed solution, a classical finite Fourier series, is a highly accurate approximation
to f on the interval [−1, 1]. Though Problem 1.1 is ill-conditioned, we arrive in this
paper at the surprising conclusion that numerical error stabilizes the computations
without sacrificing accuracy. The advantage of this approach, compared to computing
the exact solution, is that the form (1.1) is maintained and, therefore, that FFT may
be used to evaluate the approximation.

In any case, exact or approximate solution, the behavior of the functions gn out-
side [−1, 1] does not appear to be of practical use unless n is small. The exact solution
is unbounded outside [−1, 1], and the numerical solution is typically wildly oscilla-
tory. Alternative optimization criteria can be devised that enforce smoothness of gn
or, equivalently, decay rates of its Fourier coefficients. This is useful if one is interested
in smooth continuations. However, it appears that only algebraic convergence rates
can be achieved in this setting. We do not pursue this option further in this paper.

The structure of the paper is as follows. In section 2 we briefly recall Chebyshev
polynomials and the concept of frames in approximation theory. We analyze Prob-
lem 1.1 in section 3, finding the exact solution and deriving some of its properties.
We analyze numerical least squares methods for Problem 1.1 in section 4. Finally, in
section 5 we describe a stable numerical method to compute the exact solution. We
end with some concluding remarks in section 6.

2. Preliminaries. We briefly recall some properties of Chebyshev polynomials
and the concept of frames in approximation theory.

2.1. Chebyshev polynomials. Chebyshev polynomials Tk(y) of the first kind
are classical polynomials. They are orthogonal with respect to the weight function
1/

√
1− y2 on the interval [−1, 1], and normalized such that Tk(1) = 1. They arise as

solutions to the Chebyshev differential equation. Alternatively, they are completely
characterized by the following property:

(2.1) cos kθ = Tk(cos θ), k ∈ N,

which expresses the fact that cos kθ is a polynomial in cos θ.
Chebyshev polynomials Uk(x) are orthogonal with respect to the weight func-

tion
√
1− y2 on the interval [−1, 1], and normalized such that Uk(1) = k + 1. The

counterpart of (2.1) is the property

(2.2)
sin(k + 1)θ

sin θ
= Uk(cos θ), k ∈ N,

which expresses the fact that sin(k + 1)θ is also a polynomial in cos θ, up to a factor
sin θ.

Chebyshev polynomials of the first kind are ideally suited to studying polynomial
approximations. For an in-depth discussion, we refer the reader to [29] and references
therein, particularly [26]. In the following, we borrow the notation and results of [29].
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The expansion of a function f ∈ L2
[−1,1] in Chebyshev polynomials of the first

kind can be written as

fn(y) =
n∑

k=0

′akTk(y)

(with ′ indicating that the first term of the sum should be halved), where

ak =
2

π

∫ 1

−1

f(y)Tk(y)
1√

1− y2
dy.

Several bounds are given in [29] for the approximation error ET
n = ‖f − fn‖L∞

[−1,1]
.

We focus on the case where f is analytic.
Theorem 2.1 (see [29, Theorem 4.3]). If f is analytic with |f(z)| ≤ M in

the region bounded by the ellipse with foci ±1 and major and minor semiaxis lengths
summing to ρ > 1, then for each n ≥ 0,

(2.3) ET
n ≤ 2M

(ρ− 1)ρn
.

Pointwise convergence in [−1, 1] holds with the same rate ρ−n [3, Theorem 7].
The error differs from the error of the best polynomial approximation to f in the
infinity norm ‖ · ‖L∞

[−1,1]
by only a logarithmic factor [29].

2.2. Bases and frames. Let {en} be an orthonormal basis of a separable Hilbert
space H with inner product 〈·, ·〉. Then Parseval’s identity holds:

(2.4) ∀f ∈ H : ‖f‖2 =
∞∑
k=0

|〈f, ek〉|2.

A frame for H is a set {un} such that

(2.5) ∀f ∈ H : A‖f‖2 ≤
∞∑
k=0

|〈f, uk〉|2 ≤ B‖f‖2.

The constants 0 < A ≤ B < ∞ are called the frame bounds. A frame is called
tight if A = B. Frames generalize bases, since condition (2.5) is considerably weaker
than (2.4). A frame may therefore not be a basis, though frames are always complete.
For example, the functions un may be linearly dependent. In general, there may be
infinitely many ways to represent f ∈ H as a linear combination of uk.

One representation of f has additional interesting properties. To any frame {uk}
corresponds a dual frame {u∗

k}, with frame bounds 1/B and 1/A, such that the series

(2.6) L∗f :=

∞∑
k=0

〈f, u∗
k〉uk

converges to f (in the norm of H). This representation is optimal in the sense that
the coefficients minimize the energy among all coefficient sequences {ak} such that
f =

∑
k akuk, i.e.,

(2.7)
∞∑
k=0

|〈f, u∗
k〉|2 ≤

∞∑
k=0

|ak|2,
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with equality if and only if ak = 〈f, u∗
k〉.

For a tight frame, the dual frame is proportional to the frame itself: u∗
k = 1

Auk.
It follows in this case from the frame property (2.5) with A = B that

(2.8)

∞∑
k=0

|〈f, u∗
k〉|2 =

1

A2

∞∑
k=0

|〈f, uk〉|2 =
‖f‖2
A

.

If all elements of a tight frame are normalized, then A can be interpreted as a measure
of the redundancy in the frame.

Frames were originally studied in the context of nonharmonic Fourier series [12],
which resembles the setting of this paper. They were picked up and studied intensively
later in the field of wavelets. For a discussion with proofs of the properties above, we
refer the reader to [9].

3. Analysis of the least squares problem.

3.1. The function space Gn. The Fourier extension problem was already for-
mulated in the introduction in Problem 1.1. We are looking for a Fourier series gn on
[−2, 2] of the form (1.1), but with the intention of performing all computations on the
interval [−1, 1]. We start by examining the set of Fourier basis functions restricted to
[−1, 1], which turns out to constitute a frame.

We define for future use two sets Cn and Sn by

(3.1) Cn :=

{
1√
2

}
∪
{
cos k

π

2
x
}n

k=1
and Sn :=

{
sink

π

2
x
}n

k=1
.

Note that Cn consists of even functions and Sn consists of odd functions. The function
space Gn is the span of

(3.2) Dn := Cn ∪ Sn.

The sets Cn and Sn play an important role in the convergence analysis.
The following lemma introduces another useful way to write the set Dn as the

union of two sets with additional properties when n = ∞.
Lemma 3.1. The set D∞ consists of all eigenfunctions of the Laplacian on [−1, 1]

subject to either homogeneous Dirichlet or Neumann boundary conditions.
Proof. Distinguishing between even and odd values of the index k in (3.1) shows

that the set D∞ can be split into the sets

LN :=

{
1√
2

}
∪ {cosπkx}∞k=1 ∪

{
sinπ

(
k +

1

2

)
x

}∞

k=0

and

LD :=

{
cosπ

(
k +

1

2

)
x

}∞

k=0

∪ {sinπkx}∞k=1.

The former set consists of all eigenfunctions of the Laplacian on [−1, 1] subject to
homogeneous Neumann boundary conditions, the latter of all eigenfunctions of the
Laplacian subject to homogeneous Dirichlet boundary conditions [22].

Both sets LN and LD are orthonormal bases for L2
[−1,1]. It follows immediately

that D∞ is a frame.
Corollary 3.2. The set D∞ is a tight frame for L2

[−1,1] with frame bound 2.
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Thus, the set of Fourier functions on [−2, 2], restricted to the interval [−1, 1],
is redundant by a factor of 2. We can expect severe conditioning problems when
performing computations with this frame, such as interpolation, since some functions
in the set may be (close to) linearly dependent.

The approximation of functions in the basis LN of eigenfunctions obeying Neu-
mann boundary conditions was the subject of a systematic study in [22], with gener-
alization to higher order differential operators in [21], generalization to higher dimen-
sions in [23], and techniques for convergence acceleration in [19].2

3.2. An orthonormal basis on [−1, 1]. We found that D∞ is not a basis for
L2
[−1,1] but a tight frame, which has redundancy. However, for any finite n, the set Dn

is a basis for a finite-dimensional subspace of L2
[−1,1]; i.e., all functions in the set are

linearly independent. It makes perfect sense, therefore, to look for an orthonormal
basis on [−1, 1]. The orthogonalization problem naturally divides into two problems,
since the even functions in Cn and the odd functions in Sn are automatically orthog-
onal to each other on the symmetric interval [−1, 1].

3.2.1. Even functions. We consider the even functions first. Denote by

Cn := spanCn

the (n + 1)-dimensional space spanned by the cosine functions. We start with the
basic but crucial observation that, since cos kx = Tk(cosx) is a polynomial in cosx of
degree k, it is also true that

(3.3) cos k
π

2
x = Tk

(
cos

π

2
x
)

is a polynomial in cos π
2x of degree k. This means that the orthogonalization can be

expressed in terms of orthogonal polynomials in the variable y = cos π
2x.

Note that for clarity of presentation in the remainder of this paper we will reserve
the variables x and y such that

(3.4) y = cos
π

2
x and x =

2

π
cos−1 y.

Theorem 3.3. Let T h
k (y) be the unique normalized sequence of orthogonal poly-

nomials satisfying

(3.5)
4

π

∫ 1

0

T h
k (y)y

l 1√
1− y2

dy = δk−l, l = 0, . . . , k − 1.

Then the set {T h
k (cos

π
2x)}nk=0 is an orthonormal basis for Cn on [−1, 1].

Proof. Consider a function g ∈ Cn. Since g is necessarily even, we can restrict
ourselves to the interval [0, 1]. The transformation y = cos π

2x maps the interval
[0, 1] to itself and is invertible with x = 2

π cos−1 y. It follows from the Chebyshev
polynomial property (3.3) that g( 2π cos−1 y) is a polynomial in y on [0, 1], which we
denote by Pg(y).

2We note here that the current paper grew out of the idea of combining these two orthonormal
bases, based on experience with the properties of expansions in LN and LD separately. We will
not expand on that point of view in this paper, but present our results in the context of Fourier
extensions.
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Conversely, from (3.3) it also follows that each polynomial p(y) of degree less than
or equal to n corresponds to a function p(cos π

2x) ∈ Cn, because the set of Chebyshev
polynomials of the first kind up to degree n is a basis for the space of all polynomials
up to degree n.

We enforce orthogonality of g to the function g̃ ∈ Cn−1. This means that∫ 1

−1

g(x)g̃(x) dx = 2

∫ 1

0

g(x)g̃(x) dx

= 2

∫ 0

1

g

(
2

π
cos−1 y

)
g̃

(
2

π
cos−1 y

) −2

π

1√
1− y2

dy

=
4

π

∫ 1

0

Pg(y)Pg̃(y)
1√

1− y2
dy

= 0.

If g(x) = T h
n (cos

π
2x), then Pg(y) = T h

n (y) and g(x) is orthogonal to all functions in
Cn−1. The normalization implicit in (3.5) corresponds exactly to the normalization of
T h
k (cos

π
2x) in L2

[−1,1]. This proves the result.

Note that the polynomials T h
n (x) have the same weight function as Chebyshev

polynomials of the first kind, but they are orthogonal on the interval [0, 1] rather
than [−1, 1]. For this reason, we refer to these polynomials as half-range Chebyshev
polynomials of the first kind. The orthogonal polynomials are guaranteed to exist,
because the weight function is positive and integrable [15, p. 4].

3.2.2. Odd functions. Next, we consider the odd part of Gn, and we denote
by

Sn := spanSn

the n-dimensional space spanned by the sine functions. The counterpart of (3.3) is
the observation that

(3.6) sin(k + 1)
π

2
x = Uk

(
cos

π

2
x
)
sin

π

2
x.

We have the following theorem.
Theorem 3.4. Let Uh

k (y) be the sequence of orthogonal polynomials satisfying

(3.7)
4

π

∫ 1

0

Uh
k (y)y

l
√
1− y2 dy = δk−l, l = 0, . . . , k − 1.

Then the set {T h
k (cos

π
2x) sin

π
2x}n−1

k=0 is an orthonormal basis for Sn on [−1, 1].
Proof. Consider a function g ∈ Sn. Since g is odd, the function g(x)/ sin π

2x is
well defined on [−1, 1] and is even. We again restrict ourselves to the interval [0, 1]
and perform the substitution y = cos π

2x. It follows from the Chebyshev polynomial
property (3.6) that

(3.8)
g( 2π cos−1 y)

sin π
2

2
π cos−1 y

=
g( 2π cos−1 y)√

1− y2

is a polynomial in y on [0, 1], which we denote by Qg(y).
Conversely, from (3.6) it also follows that each polynomial q(y) of degree less

than n corresponds to a function q(cos π
2x) sin

π
2x ∈ Sn, because the set of Chebyshev
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Fig. 2. Plots of the half-range Chebyshev polynomials of the first kind (left panel) and of the
second kind (right panel).

polynomials of the second kind up to degree n − 1 is a basis for the space of all
polynomials up to degree n− 1.

We enforce orthogonality of g to the function g̃ ∈ Sn−1. This means that

∫ 1

−1

g(x)g̃(x) dx = 2

∫ 1

0

g(x)g̃(x) dx

= 2

∫ 0

1

g
(
2
π cos−1 y

)
√
1− y2

g̃
(
2
π cos−1 y

)
√
1− y2

(1− y2)
−2

π

1√
1− y2

dy

=
4

π

∫ 1

0

Qg(y)Qg̃(y)
√

1− y2 dy

= 0.

If g(x) = Uh
n−1(cos

π
2x) sin

π
2x, then Qg(y) = Uh

n−1(y) and g(x) is orthogonal to all
functions in Sn−1. The normalization implicit in (3.7) corresponds exactly to the
normalization of Uh

k (cos
π
2x) sin

π
2x in L2

[−1,1]. This proves the result.

Similar to the case of even functions, the orthogonal polynomials Uh
n (y) have the

same weight function as the Chebyshev polynomials of the second kind, but they
are defined on half the range. We call them half-range Chebyshev polynomials of the
second kind.

3.2.3. Properties of the orthogonal polynomials. Figure 2 shows the first
few half-range Chebyshev polynomials of the first and of the second kind. They are
not classical polynomials. The polynomials of the first kind, shown in the left panel of
Figure 2, are almost equi-oscillatory except near the origin. This is reminiscent of clas-
sical Chebyshev polynomials of the first kind. Their value at y = 1 converges rapidly
to 2−1/4 ≈ 0.84 . . . , but they are unbounded at y = 0. The half-range Chebyshev
polynomials of the second kind are unbounded in both endpoints.

The growth of the polynomials in the endpoints follows from existing results in
the theory of orthogonal polynomials for weight functions of the form

(3.9) w(z) = h(z)(1− z)α(1 + z)β
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on the interval [−1, 1]. This modified Jacobi weight dates back to the original work of
Bernstein [2]. First, we have the following result for the behavior of such polynomials
near the endpoints.

Theorem 3.5. Let pn(z) be a family of orthonormal polynomials with respect to
the weight function w(z) = h(z)(1 − z)α(1 + z)β on [−1, 1], with h real analytic and
strictly positive on [−1, 1] and α, β > −1 real. Then

pn(1) ∼ nα+1/2 and pn(−1) ∼ nβ+1/2, n → ∞.

Proof. We consider the endpoint z = 1; the result for the point z = −1 follows by
symmetry. From [24, Theorem 1.13], we find the asymptotic behavior of the monic
orthogonal polynomials πn(z), for z ∈ (1− δ, 1) with sufficiently small δ,

πn(z) ∼ n1/2

2n
a1(z)

[
cos a2(z)Jα(n arccos z) + sina3(z)J

′
α(n arccosz) +O

(
1

n

)]
,

where the functions aj(z), j = 1, 2, 3, are known explicitly and are independent of
n and where Jα is the usual Bessel function of order α. From [24, Theorem 1.6] we
obtain the asymptotic relation between the monic and orthonormal polynomials,

pn(z) ∼ 2nπn(z), n → ∞.

Noting that Jα(z) ∼ zα when z → 0 [1, equation (9.1.7)] leads to the result.
The proofs in [24] are based on the analysis of a related Riemann–Hilbert problem

using the steepest descent technique of Deift and Zhou [10]. Half-range Chebyshev
polynomials are orthogonal with respect to a weight function of the form (3.9) after the
linear map z = 2x− 1 from [0, 1] to [−1, 1]. The growth of the half-range Chebyshev
polynomials near the endpoints can now be characterized explicitly.

Theorem 3.6. The half-range Chebyshev polynomials of the first and second
kinds satisfy

T h
k (0) ∼

√
k, T h

k (1) ∼ 1, Uh
k (0) ∼

√
k, Uh

k (1) ∼ k,

for k → ∞.
Proof. The weight functions of the half-range Chebyshev polynomials have the

form (3.9) up to a linear mapping z = 2x − 1 from the interval [0, 1] to [−1, 1]. We
can apply Theorem 3.5 with α = −1/2 and β = 0 for the polynomials of the first kind
and with α = 1/2 and β = 0 for the polynomials of the second kind.

3.3. The exact solution. With an orthonormal basis of our search space in
hand, the exact solution to Problem 1.1 readily follows from the orthogonal projection.
This shows existence and uniqueness of the solution for any given f ∈ L2

[−1,1].

Theorem 3.7. For a given f ∈ L2
[−1,1], the solution to Problem 1.1 is

(3.10) gn(x) =

n∑
k=0

akT
h
k

(
cos

π

2
x
)
+

n−1∑
k=0

bkU
h
k

(
cos

π

2
x
)
sin

π

2
x,

where

(3.11) ak =

∫ 1

−1

f(x)T h
k

(
cos

π

2
x
)
dx
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and

(3.12) bk =

∫ 1

−1

f(x)Uh
k

(
cos

π

2
x
)
sin

π

2
xdx.

Proof. The result is the orthogonal projection onto the orthonormal bases that
were found in Theorems 3.3 and 3.4.

The coefficients can also be found from polynomial expansions after the transfor-
mation (3.4), which leads to more standard expressions, but one has to distinguish
between the even and the odd parts of f .

Corollary 3.8. For a given f ∈ L2
[−1,1], denote by fe and fo its even and odd

parts,

(3.13) fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)

2
.

The solution to Problem 1.1 is given by (3.10) with

(3.14) ak =
4

π

∫ 1

0

fe

(
2

π
cos−1 y

)
T h
k (y)

1√
1− y2

dy

and

(3.15) bk =
4

π

∫ 1

0

fo

(
2

π
cos−1 y

)
Uh
k (y) dy.

Proof. Write f(x) = fe(x)+fo(x) in the expressions for ak and bk in Theorem 3.7.
The odd part of f is irrelevant for ak, since T h

k (cos
π
2x) is even. Likewise, the even

part of f is irrelevant for bk. The result follows immediately from the substitution
y = cos π

2x. (Note, in the case of bk, that the Jacobian of the transformation partially
cancels with the additional sine function in (3.12).)

Let us for convenience define the functions

(3.16) f1(y) := fe

(
2

π
cos−1 y

)
= fe(x)

and

(3.17) f2(y) :=
fo

(
2
π cos−1 y

)
√
1− y2

=
fo(x)

sin π
2x

.

Corollary 3.8 informs us that the exact solution to the Fourier extension problem is
found from the least squares polynomial approximations of the functions f1(y) and

f2(y) with respect to the weight functions 4
π

1√
1−y2

and 4
π

√
1− y2 on [0, 1].

3.4. Convergence. The explicit expressions for the exact solution of Prob-
lem 1.1 in terms of orthogonal polynomials enable using standard theory in poly-
nomial approximation to derive the convergence rate of the approximation. We will
focus in this paper only on the case of analytic f .

3.4.1. Preparatory lemmas. First, we examine the convergence of polynomial
least squares approximations on the interval [0, 1]. Let pn(y) be a sequence of polyno-
mials, orthonormal with respect to the positive and integrable weight function w(y)
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on [0, 1]. The weighted least squares polynomial approximation to a function h is
given by

hn(y) =
n∑

k=0

cnpn(y)

with

cn =

∫ 1

0

f(y)pn(y)w(y) dy.

The convergence rate of this approximation is similar to that in Theorem 2.1. In the
following lemma, we denote by L2

[0,1],w the weighted L2-space with norm

‖f‖L2
[0,1],w

=

√∫ 1

0

f(x)2w(x) dx.

Lemma 3.9. Let h be analytic with |h(z)| ≤ M in the region bounded by the
ellipse with foci 0 and 1 and major and minor semiaxis lengths summing to ρ/2. If
ρ > 1, then

(3.18) ‖h− hn‖L2
[0,1],w

∼ ρ−n, n → ∞.

Proof. The substitution u = 2z − 1 maps an ellipse with foci 0 and 1 and major
and minor semiaxis lengths summing to ρ/2 to an ellipse with foci ±1 and major
and minor semiaxis lengths summing to ρ. Hence, if ρ > 1, then from the theory of
Chebyshev expansions in section 2.1 a polynomial q of degree n exists such that

h(z)− q(z) ∼ ρ−n, z ∈ [0, 1].

Since hn is the weighted least squares approximation to h, we have∫ 1

0

(h(z)− hn(z))
2w(z) dz ≤

∫ 1

0

(h(z)− q(z))2w(z) dz

≤ ‖h− q‖L∞
[0,1]

‖w‖L1
[0,1]

.

Since w is positive and integrable, this proves the result.
We will also make use of the following result later on.
Lemma 3.10. Let f be even and analytic. Then f is periodic on [−2, 2] if and

only if f is even with respect to 2.
Proof. Assume first that f is even and 4-periodic. Then we have

f(2− a) = f(−2 + a) = f(2 + a),

and so f is even around 2. Next, if f is even around 0 and 2, then we have

f(a) = f(2− (2− a)) = f(2 + (2− a)) = f(4− a) = f(a− 4),

and so f is 4-periodic.
The proof of the following lemma is analogous and is omitted.
Lemma 3.11. Let f be odd and analytic. Then f is periodic on [−2, 2] if and

only if f is odd with respect to 2.
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3.4.2. Proof of exponential convergence. In order to understand the conver-
gence rate of the solution to Problem 1.1 for analytic f , we should know the domain
of analyticity of the functions f1(y) and f2(y). It turns out that the substitution
x = 2

π cos−1 y introduces singularities in the complex plane such that, even when f
is entire, the convergence rate of the Fourier extension problem is bounded in most
cases.

Definition 3.12. The Fourier extension constant is

E = 3 + 2
√
2.

Lemma 3.13. Let f(x) be even and analytic in a neighborhood of [−1, 1], and
define

f̃(y) = f

(
2

π
cos−1 y

)
.

If f̃(y) is analytic in the region bounded by an ellipse with foci 0 and 1 and major and
minor semiaxis lengths summing to ρ/2, then

(3.19) ρ ≤ E,

unless f is analytic and periodic on [−2, 2].
Proof. The major semiaxis length a, minor semiaxis length b, and distance 2c

between the two foci of an ellipse are related by a2 − b2 = c2. For an ellipse with foci
0 and 1, this means a2 − b2 = 1/4.

The function cos−1 y has square root–type singularities at y1 = 1 and y2 = −1.
However, since 2

π cos−1 y1 = 0 and since f is assumed to be even, the singularity

squares away and f̃ is analytic at y1 = 1.
A possible singularity remains at y2. Assume sufficient analyticity of f , in order to

get an upper bound for ρ. If f̃ is also analytic at y2, then f is necessarily even around
2
π cos−1 y2 = 2. Since f is then even around 0 and 2, it follows from Lemma 3.10 that
f is periodic on [−2, 2].

Otherwise, in the general case where f is not periodic on [−2, 2], the major
semiaxis length of an ellipse with foci 0 and 1 bounding the region of analyticity of f̃
is limited to a = 3

2 , i.e., to the distance between the center of the ellipse at y = 1/2
and the nearest singularity at y = −1. The sum of major and minor semiaxis lengths
is a+

√
a2 − 1/4 = ρ/2, which for a = 3/2 leads to the bound for ρ.

The (open) domain of analyticity of f̃(y) should be an ellipse with foci 0 and 1.
This domain is mapped by

x =
2

π
cos−1 y

to the corresponding domain of analyticity of the even function f . The form of this
domain is shown in the right-hand panel of Figure 3. We denote the latter by D(R),
where R is the major semiaxis length of the ellipse. Note that the intersection of
D(3/2) with the real axis is the interval [−2, 2].

Theorem 3.14. If f is analytic in the domain D(R), with R > 1/2, then the
solution gn to Problem 1.1 satisfies

‖f − gn‖L2
[−1,1]

∼ ρ−n,
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(a) Ellipses with foci 0 and 1 and major semi-
axis length R.
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(b) The corresponding domains D(R).

Fig. 3. The domains of analyticity for f̃(y) (left panel) for R = 1/2, 1, 3/2, and the correspond-
ing domains of analyticity D(R) for f(x) (right panel).

with

(3.20) ρ = min
(
E, 2R+

√
4R2 − 1

)
,

unless f is analytic and periodic on [−2, 2].
Proof. First, we can invoke Lemma 3.13 for the functions fe(x) and fo(x)/ sin

π
2x,

which are both even. The function fe(x) is analytic in D(R) by construction. The
function fo(x)/ sin

π
2x may have poles at x = ±2n for n ∈ N0. If fo(x) is periodic

on [−2, 2], then it follows from Lemma 3.11 that it vanishes at all possible poles, so
fo(x)/ sin

π
2x is analytic in D(r). Otherwise, if fo(x) is not periodic, fo(x)/ sin

π
2x is

analytic only in

D := D(R) ∩D

(
3

2

)
.

Next, recall the definitions (3.16) and (3.17) of f1 and f2. Denote by pn(y) the
polynomial least squares approximation of degree n of f1(y) with respect to the weight
function 4

π
1√
1−y2

, and by qn(y) the polynomial least squares approximation of degree

n − 1 of f2(y) with respect to the weight function 4
π

√
1− y2. Note that, since odd

and even functions are orthogonal on [−1, 1], we have
(3.21)

‖f − gn‖2L2
[−1,1]

=
∥∥∥fe − pn

(
cos

π

2
x
)∥∥∥2

L2
[−1,1]

+
∥∥∥fo − qn

(
cos

π

2
x
)
sin

(π
2
x
)∥∥∥2

L2
[−1,1]

.

Define ρ as in (3.20). From Theorem 2.1, we find that

4

π

∫ 1

0

(f1(y)− pn(y))
2 1√

1− y2
(y) dy ∼ ρ−2n

and

4

π

∫ 1

0

(f2(y)− qn(y))
2
√
1− y2(y) dy ∼ ρ−2(n−1) ∼ ρ−2n.
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(a) f(x) = 2x2 + 3x+ 1.
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(b) f(x) = cos cos π
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Fig. 4. Logarithmic plots of the ak coefficients (+) and bk coefficients (o) of gn in the
form (3.10). Also shown is the curve E−n (dashed line).

Finally, we note that the two integrals in the expressions above correspond exactly to
the two norms in the right-hand side of (3.21) by letting y = cos π

2x. This proves the
result.

Corollary 3.15. Under the conditions of Theorem 3.14, the coefficients ak and
bk of gn in the form of (3.10) satisfy ak, bk ∼ ρ−n.

Figure 4 shows the size of the ak and bk coefficients of gn in the form (3.10) for two
functions f . The first function (left panel) is entire but not periodic. The convergence
rate is E−n, as predicted by the theory. The second function (right panel) is entire
and periodic. The convergence rate for this example is faster than exponential. The
computations were performed in MATLAB in double precision using the algorithm
outlined in section 5.

We conclude in this section that the convergence rate is truly exponential of the
form e−cn, though the exponent is limited in most cases to logE ≈ 1.76. It is not
surprising that functions periodic on [−2, 2] are an exception to this rule. Indeed, such
functions have rapidly converging classical Fourier series on [−2, 2] which, depending
on nearby singularities in the complex plane, may converge faster. Note, however, that
gn(x) does not necessarily coincide with the classical Fourier series of f on [−2, 2],
truncated after 2n+ 1 terms.

3.5. The Fourier extension on [−2, 2]. In this section, we analyze the behav-
ior of the Fourier extension of f outside the interval [−1, 1]. To that end, we have to
examine the rate of growth of the orthogonal polynomials in [−1, 1]. The polynomials
attain their maximum at the left endpoint y = −1.

Theorem 3.16. The polynomials T h
k (y) satisfy

(3.22) T h
k (−1) ∼ Ek

for k → ∞.
Proof. We can again invoke the asymptotic analysis in [24] for orthonormal poly-

nomials with a modified Jacobi weight of the form (3.9) on [−1, 1]. We find from [24,
Theorem 1.4] that all such orthonormal polynomials pk satisfy

(3.23) pk(z) ∼ φ(z)k,

regardless of the value of α and β, where the function

(3.24) φ(z) = z + (z2 − 1)1/2, z ∈ C \ [−1, 1],
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(b) |x− gn(x)|.

Fig. 6. Illustration of the Fourier extension gn(x) of f(x) = x for n = 5, 10, 15, 20. Slow
growth outside [−1, 1] is seen in the left panel. The right panel shows that the approximation is very
accurate on [−1, 1], including in the endpoints.

is the conformal map from C \ [−1, 1] onto the exterior of the unit circle. The branch
of (z2 − 1)1/2 which is analytic on C \ [−1, 1] and behaves like z as z → ∞ is taken.
The linear map z = 2x− 1 f rom [0, 1] to [−1, 1] maps the point x = −1 onto z = −3.
We have

φ(−3)k = (−3− 2
√
2)k = (−E)k ∼ Ek, k → ∞,

which proves the result.
A similar statement can be made regarding the polynomials Uh

k (y). Figure 5
illustrates that the ratios T h

k (−1)/Ek and Uh
k (−1)/Ek indeed quickly converge to

a limit. This growth of the polynomials compensates for the rapid decay of the
expansion coefficients ak and bk, such that gn may actually diverge outside [−1, 1].
We illustrate this for the function f(x) = x in Figure 6. The Fourier extension grows
slowly outside the interval [−1, 1]. The approximation on [−1, 1] is very accurate,
however, up to and including in the endpoints. The growth outside [−1, 1] is more
pronounced for the function f(x) = 1/(1 + 2x2), which has two poles ±i/

√
2 near

the real axis. This is shown in Figure 7. Note that the approximation remains
very accurate on [−1, 1], roughly achieving machine precision. These examples were
computed using the algorithm outlined in section 5.
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Fig. 7. Same as Figure 6 but for the function f(x) = 1
1+2x2 . The growth of the Fourier

extension outside [−1, 1] is more pronounced in this example, but the approximation remains very
accurate on [−1, 1].

4. Numerical least squares methods. There are many approximate repre-
sentations of f in the spaceGn. In this section, we describe the mechanism that makes
well-designed numerical methods favor accurate representations with small Fourier co-
efficients over the exact solution to Problem 1.1 that yields large Fourier coefficients.

4.1. Projection methods and collocation methods. For simplicity of nota-
tion in this section, we will focus on solving Problem 1.1 in the function space G2n

rather than the space Gn.
A straightforward translation of Problem 1.1 into a linear algebra problem is the

following. Given a basis {φj}4n+1
j=1 of G2n, the solution to Problem 1.1 is

gn(x) =

4n+1∑
j=1

xjφj(x),

where the coefficients xj are found by solving the linear system of equations

(4.1) Ax = B.

The entries of the matrix A ∈ R
(4n+1)×(4n+1) are given by

(4.2) Ai,j = 〈φj , φi〉,
and the elements of B ∈ R4n+1 are

Bi = 〈f, φi〉.
In exact arithmetic, this projection method produces the exact solution to Prob-
lem 1.1, regardless of the basis used.

Alternatively, one may use a collocation approach. For a set {yj}Mj=1 of collocation
points, with yj ∈ [−1, 1] and M ≥ 4n+ 1, solve the linear system of equations

(4.3) Ãx = B̃,

where Ãij = φj(yi) and B̃i = f(yi). Note that

(4.4) A ≈ c(M)ÃT Ã;
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i.e., the linear system Ax = B approximates the normal equations of the least squares
problem (4.3), up to a constant c(M) that depends on M . For example, this constant
is c(M) = 2

M−1 when using M equidistant points on [−1, 1].3 Expression (4.4) implies
that

κ(A) ≈ κ(Ã)2.

For this reason one may in general expect better numerical results from the collocation
approach [25].

These methods, and variants thereof, were used in [4, 7, 8] to solve the Fourier
extension problem numerically. The FPIC-SU method (Fourier Physical Interval
Collocation—Spectral coefficients as Unknowns) was proposed in [4] and is based on
solving (4.3) using a truncated singular value decomposition of Ã, followed by iterative
refinement. The authors of [7, 8] also propose an SVD-based solver for the collocation
system (4.3). Additionally, in [8] they describe a least squares method to compute the
Fourier coefficients of a Fourier extension on [0, 2] based on the Fourier coefficients of
a given function f on [0, 1]. This is comparable to the projection method (4.1), except
that in [8] this system too is allowed to be overdetermined. For other uses of Fourier
extension in scientific computations, we refer the reader to the references in [4].

4.2. Block structure and other properties of A. We examine the struc-
ture and properties of the matrix A. The properties of Ã may be derived from the
relation (4.4). We start with the following observation.

Lemma 4.1. The matrix A is symmetric and positive definite.
Proof. It follows from the theory in section 3 that D2n is a basis for G2n on

[−1, 1]. Since A consists of all inner products of the basis functions, it is symmetric
and positive definite.

Matrix A, moreover, has a simple structure. Recall from Lemma 3.1 that the
set D2n, which spans G2n, consists of Laplace eigenfunctions subject to Neumann or
Dirichlet boundary conditions. We have

D2n = LN ∪ LD,

where (note that we redefine LN and LD here to be finite sets)

(4.5) LN := {φN
j }2n+1

j=1 =

{
1√
2

}
∪ {cosπkx}nk=1 ∪

{
sinπ

(
k +

1

2

)
x

}n−1

k=0

and

(4.6) LD := {φD
j }2nj=1 =

{
cosπ

(
k +

1

2

)
x

}n−1

k=0

∪ {sinπkx}nk=1.

With that order of the basis functions, the matrix A has the following block structure:

(4.7) A =

[
I2n+1 C
CT I2n

]
,

where Im ∈ Rm×m is the identity matrix. The matrix C ∈ R(2n+1)×2n is a coupling
matrix given by

Ci,j = 〈φD
j , φN

i 〉.
3This follows from the observation that each element of ÃT Ã is a low order composite quadrature

approximation to the integrals of the form (4.2) with step size h = 2/(M − 1).
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It turns out that all eigenvalues and eigenvectors of A are easily determined.
Theorem 4.2. Let C = UΣV T be the SVD of C. For each singular value σk,

with left and right singular vectors uk and vk, we have

A

[
uk

vk

]
= (1 + σk)

[
uk

vk

]

and

A

[
uk

−vk

]
= (1− σk)

[
uk

−vk

]
.

We also have

A

[
u2n+1

0

]
=

[
u2n+1

0

]
.

Proof. Consider the first eigenvalue (1+σk). Since Cvk = σkuk and CTuk = σkvk,
we have

A

[
uk

vk

]
=

[
uk + Cvk
CTuk + vk

]
= (1 + σk)

[
uk

vk

]
.

The case of the eigenvalue (1 − σk) is analogous. Together, these two cases account
for 4n of the 4n+ 1 eigenvalues of A.

Since C is not square, there are 2n+ 1 left singular vectors uk but only 2n right
singular vectors vk. Because u2n+1 lies in the null space of CT , we have CTu2n+1 = 0,
and the same reasoning as above yields the last eigenvalue 1 with the given correspond-
ing eigenvector.

Corollary 4.3. 0 ≤ σk < 1.
Proof. Singular values are positive by construction. Since A is positive definite,

all its eigenvalues are positive. This means that 1− σk > 0 or σk < 1.
Corollary 4.4. 0 < λk < 2.
The eigenvalues of A are bounded by 0 and 2. Numerical experiments indicate

that the eigenvalues rapidly accumulate near 0 and 2. Figure 8 illustrates the accu-
mulation of the 2n singular values σk near 1 for n = 10. The eigenvalues of A are
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(b) κ(A) and E4n.

Fig. 8. The distribution of the singular values of C for n = 10 (left panel), and the condition
number of A versus E4n (right panel).



ON THE FOURIER EXTENSION OF NONPERIODIC FUNCTIONS 4345

similarly distributed near 0 and 2. This means that ‖A‖ is bounded, but ‖A−1‖ is
not. Numerical experiments suggest that

κ(A) ∼ E4n, n → ∞.

The condition number of A reaches 1e15 for n = 5. This corresponds to a matrix of
size 4n+ 1 = 21 by 21.

Remark 4.5. Let us briefly comment on the meaning of the eigenvectors
[
uk

vk

]
.

The fact that σk ≈ 1 means that the spaces LN := spanLN and LD := spanLD

are, in a sense, similar. We have
∑

k ukφ
N
k ≈ ∑

k vkφ
D
k . Any function giving rise to

the right-hand-side vector B =
[
uk

vk

]
projects similarly onto the spaces LN and LD.

The eigenvalue 1 + σk is bounded away from zero, and the corresponding solution to
Ax = B is therefore well behaved. In contrast, any function that leads to B =

[
uk

−vk

]
projects differently onto these spaces—the projections are nearly equal but opposite
in sign. The corresponding solution vector x is large, because the eigenvalue 1 − σk

is small. This case is increasingly unlikely, since the projections of a function onto
LN and onto LD both converge to the function itself. It may happen, however, if
n is not large enough. We will illustrate further on the observation that accurate
representations of f with small Fourier coefficients can be found only provided that
n is sufficiently large.

4.3. Stability. Ideally, we would like to obtain estimates

c1‖f‖ ≤ ‖x‖ ≤ c2‖f‖.

However, such estimates obviously cannot hold with bounded constants, because the
inverse of A is unbounded. Based on Theorem 4.2, we can formulate a result that
comes close.

Theorem 4.6. If B ∈ span{[uk

vk

]}, then
1

2
‖B‖ ≤ ‖x‖ ≤ ‖B‖.

Proof. The right-hand side of Ax = B lies in the space spanned by eigenvectors
of A with eigenvalues 1 ≤ λk = 1 + σk < 2.

This result is encouraging, yet not very informative, since the singular vectors of
C are unknown and the condition on B seems to be rather restrictive.

The lower bound in Theorem 4.6 does have a precise meaning. Note that this
lower bound actually holds for all B, since all eigenvalues are bounded by 2. Because
by the frame property ‖B‖ → √

2‖f‖, the bound converges to

(4.8)
1√
2
‖f‖ ≤ ‖x‖.

This inequality corresponds exactly to inequality (2.6), using the representation in
terms of the dual frame. Thus, the lower bound (4.8) is achieved if

(4.9) xj = 〈f, φ∗
j 〉 =

1

2
〈f, φj〉.

(Note that this holds in principle only for n = ∞.) This representation of f is optimal
in the sense of minimizing the energy of the coefficients, but it is not optimal in the



4346 DAAN HUYBRECHS

sense of minimizing the norm ‖f − ·‖L2
[−1,1]

. In fact, the series

(4.10) g∗ :=

∞∑
j=1

1

2
〈f, φj〉φj

converges rather slowly and exhibits the Gibbs phenomenon.4

4.4. An underdetermined system of equations. There are infinitely many
representations of f in the frame D∞. Therefore, if n is sufficiently large, there
are many approximate representations of f in D2n. Two of these have received our
special attention: one is the exact solution to Problem 1.1, and the other is the
dual frame representation (4.10). The former converges rapidly to f but leads to
unbounded Fourier coefficients. The latter converges slowly to f but leads to bounded
Fourier coefficients. One may expect a numerical method to yield a representation
in between these two extremes. There is a well-understood mechanism that makes
certain numerical methods favor the latter.

We proceed formally. For an in-depth discussion of numerical methods for least
squares problems, we refer the reader to [25]. Assume a numerical method that ap-
proximately solves an ill-conditioned system of equations by discarding small eigen-
values. Then system (4.1) can be formally replaced by

(4.11) Amx = B,

where Am ∈ Rm×(4n+1) is a rank-m approximation to A, with m < 4n+1. Assuming
that B lies in the range of Am, the linear system of equations (4.11) is now underde-
termined. There are many vectors x that satisfy (4.11). However, exactly one solution
x∗ of an underdetermined system minimizes ‖x‖ among all possible solutions [25].

For example, assume that A = V ΛV T is the eigenvalue decomposition of the
symmetric and positive definite matrix A. Denote by Λ̃ ∈ Rm×m a truncation of
Λ that discards small eigenvalues, and let Ṽ ∈ R4n+1×m denote the corresponding
eigenvectors. Then the underdetermined system of equations is

Ṽ Λ̃Ṽ Tx = B.

It is a property of the Fourier extension problem that B lies approximately in the
range of the low rank matrix, at least for sufficiently large n as we will illustrate
further below, due to the fact that there are many approximate representations of f
in D2n. The solution minimizing ‖x‖ is found by solving the diagonal system

Λ̃y = Ṽ TB

and letting

(4.12) x∗ = Ṽ T y.

Note that the eigenvalue decomposition of A can be computed efficiently from the
SVD of C.

In the case of the collocation method, the approach is similar but based on a
truncated SVD of Ã. We note that, due to the property (4.4), the eigenvalues of A

4The part corresponding to the Laplace–Neumann eigenfunctions converges pointwise in [−1, 1];
the Laplace–Dirichlet eigenfunctions are responsible for the Gibbs phenomenon [22].
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are directly related to the singular values of Ã. This means that we may expect an
energy-minimizing property of the solution similar to that in the projection method.
Results may even be better, because κ(A) ∼ E4n whereas κ(Ã) ∼ E2n. Alternatively,
results are shown further on by simply using the backslash operator in MATLAB,
x = Ã \ B̃.

We conclude that the degrees of freedom that result from discarding small eigen-
values of A or small singular values of Ã can be used to minimize the norm of the
solution. Hence, since the vector x represents Fourier coefficients, unbounded Fourier
coefficients can be avoided in practice. This is essentially due to numerical error: for
large n it is not feasible numerically to recover the exact solution of Problem 1.1.

4.5. Numerical results. We illustrate the statements made in this section using
the example functions

f1(x) = x

and

(4.13) f2(x) = esin(5.4πx−2.7π)−cos(2πx).

The latter function was chosen in [8] as an example that leads to large Fourier coeffi-
cients for moderate n.

We use two numerical methods: the projection method, which corresponds to
solving system (4.1), and the collocation method, which corresponds to solving sys-
tem (4.3). In the former case, we compute the SVD of C, which yields the eigenvalue
decomposition of A, and we compute the solution by (4.12). In the latter case, we
compute the SVD of Ã. We chooseM = 1000 equidistant collocation points in [−1, 1].
We use the threshold 1e− 12 for the eigenvalues of A and for the singular values of Ã.
For both methods, we also compare results with the backslash operator in MATLAB.
This operator automatically solves an over- or underdetermined system of equations
in the least squares sense. It determines an effective rank K of the matrix from the
QR decomposition with pivoting and produces a solution with at most K nonzero
components.

The results are shown in Figure 9. The projection method initially converges
rapidly but levels off when an approximation error of order 1e−8 is reached. The col-
location method, somewhat surprisingly, actually reaches machine precision for both
example functions. The MATLAB computed solution has an accuracy comparable to
that of the explicit truncation approach for the collocation method, but it is somewhat
less accurate for the projection method.

The norms of the solution vectors are shown in the right-hand panels of Figure 9.
We observe that the solution vectors may be very large, especially for the second
function f2. Yet, for increasing n, their norms start converging for three out of four
methods. The MATLAB computed solution A \ B for the projection method does
not yield small Fourier coefficients. The convergence of the norms for the other three
methods is shown in more detail in Figure 10. Both explicit truncation methods yield
a solution vector with a norm that approaches the optimal value ‖f‖/√2 when n
increases. The MATLAB computed solution Ã \ B̃ yields a solution vector with a
norm that approaches ‖f‖. At n = 80, this vector has only 192 nonzero components
out of 4n+ 1 = 321.

Finally, we illustrate the behavior of these approximations outside [−1, 1]. Fig-
ure 11 shows the solution to the collocation problem using the truncated SVD ap-
proach and the MATLAB solution. The behavior of the functions is smooth for n = 10
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Fig. 9. Convergence plot of four numerical methods: truncated eigenvalue decomposition of A
(�), truncated SVD of Ã (�), MATLAB solution A \ B (+), and MATLAB solution Ã \ B̃ (×).
The left panels show the approximation error ‖f − gn‖; the right panels show the norm ‖x‖ of the
solution vector.
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Fig. 10. The panels (b) and (d) of Figure 9 are shown in a different scale. Also shown is the
norm ‖f‖ (dashed line) and the value 1√

2
‖f‖ (solid line).

but highly oscillatory for n = 100. In section 3 we observed that the exact solution
to Problem 1.1 does not converge to a fixed function on [−2, 2]. This experiment
shows that the numerical solutions do not converge to a fixed function either. We
note that the dual frame representation (4.10) converges slowly to 0 outside [−1, 1].
The numerical solution that approaches the optimal energy ‖f‖/√2 also seems to be
small outside [−1, 1].
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Fig. 11. Illustration of the periodic behavior of the solution, for f(x) = x and for varying
problem size n, using both numerical methods for the collocation problem: SVD approach (solid
line) and MATLAB solution (dashed line).

5. Numerical methods for the exact solution. It is numerically unstable to
represent the exact solution gn to Problem 1.1 in the basis Dn. However, the repre-
sentation in terms of orthogonal polynomials is stable. There is a general algorithm
for computing polynomial expansions in a stable manner, based on the associated
Gaussian quadrature. In this section we describe its application to the Fourier ex-
tension problem. Alternatively, asymptotically faster algorithms for computing the
polynomial transforms might be found in [11, 27].

5.1. Gaussian quadrature. Both families of orthogonal polynomials T h
m and

Uh
m have associated families of Gaussian quadrature. Denote by {yFK

j }mj=1 the roots

of the half-range Chebyshev polynomials of the first kind T h
m(y). Note that all roots

lie in the interval [0, 1] and that the associated weights are positive [15]. The weights
satisfy

m∑
j=1

wFK
j (yFK

j )j =
4

π

∫ 1

0

yjT h
j (y)

1√
1− y2

dy, k = 0, . . . , 2m− 1;

i.e., the quadrature rule is exact for polynomials up to degree 2m − 1. The weights
can be computed efficiently in a numerically stable manner based on the recurrence
coefficients of the orthogonal polynomials [16].

Similarly, denote by {ySK
j }mj=1 the roots of the half-range Chebyshev polynomials

of the second kind Uh
m(y). The associated weights satisfy

m∑
j=1

wSK
j (ySK

j )j =
4

π

∫ 1

0

yjUh
j (y)

√
1− y2 dy, k = 0, . . . , 2m− 1.

It is interesting to point out that the first kind of quadrature rule also leads to
a quadrature rule on [−1, 1] that is exact for all trigonometric functions in G2m−1.
Define 2m quadrature points and weights as follows:

(5.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xTR
j = 2

π cos−1 yFK
j ,

xTR
j+m = − 2

π cos−1 yFK
j ,

wTR
j = 1

2w
FK
j ,

wTR
j+m = 1

2w
FK
j ,

j = 1, . . . ,m.
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The transformation x = 2
π cos−1 y is applied to the points yFK

j . This transformation
maps the interval [0, 1] to itself. However, the resulting rule may be applied only to
even functions. The quadrature points are therefore mirrored to [−1, 0], with halved
weights, to select the even part of any given function f . As a result, the rule is
exact for all odd functions on [−1, 1]. The quadrature approximation is 0 whenever
f(x) = −f(−x).

5.2. Computing the coefficients. The coefficients ak and bk of the exact so-
lution (3.10) may be computed based on expressions (3.14) and (3.15). We have

ak ≈ QFK
k [f ] =

m∑
j=1

wFK
j fe

(
2

π
cos−1 yFK

j

)
T h
k (y

FK
j ),(5.2)

bk ≈ QSK
k [f ] =

m∑
j=1

wSK
j

fo
(
2
π cos−1 ySK

j

)
√
1− (ySK

j )2
Uh
k (y

SK
j ).(5.3)

Equivalent expressions are

QFK
k [f ] =

m∑
j=1

1

2
wFK

j

[
f

(
2

π
cos−1 yFK

j

)
+ f

(
− 2

π
cos−1 yFK

j

)]
T h
k (y

FK
j ),(5.4)

QSK
k [f ] =

m∑
j=1

1

2
wSK

j

⎡
⎣f

(
2
π cos−1 ySK

j

)
√
1− (ySK

j )2
− f

(− 2
π cos−1 yFK

j

)
√
1− (ySK

j )2

⎤
⎦Uh

k (y
SK
j ).(5.5)

5.3. Convergence. Let us determine the number of quadrature points necessary
to compute the coefficients ak and bk such that the computed solution converges at
the same rate as the exact solution. To that end, write the function f as

(5.6) f(x) = gn(x) +R(x),

where gn(x) is the exact solution to Problem 1.1 and R(x) is a remainder term. Recall
that gn(x) has the form (3.10).

Theorem 5.1. Let ak be approximated by QFK
k [f ] with m = n + 1, and let bk

be approximated by QSK
k [f ] with m = n. If f(x) can be written as (5.6), with R(x)

continuously differentiable, then there exist constants c1, c2 > 0 such that

|QFK
k [f ]− ak| ≤ c1

√
k ‖R‖∞,

|QSK
k [f ]− bk| ≤ c2 k ‖R′‖∞.

Proof. The even part of f can be written as

fe(x) =

n∑
i=0

aiT
h
i

(
cos

π

2
x
)
+Re(x),

where Re(x) =
1
2 (R(x) +R(−x)) is the even part of R. We have

QFK
k [f ] = QFK

k [fe] =

n∑
i=0

aiQ
FK
k

[
T h
i

(
cos

π

2
x
)]

+QFK
k [Re].
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Consider first the sum in this expression. We have

QFK
k

[
T h
i

(
cos

π

2
x
)]

=

m∑
j=1

wFK
j T h

k (y
FK
j )T h

i (y
FK
j ).

The quadrature rule is applied to a polynomial of degree k+ i. Since k ≤ n and i ≤ n,
the maximal degree is 2n. Hence, letting m = n+ 1, the quadrature rule is exact for
these polynomials. We find that QFK

k [T h
i (cos

π
2 ·)] = δk−i and

QFK
k [f ] = ak +QFK

k [Re].

Next, consider the remainder term

QFK
k [Re] =

m∑
j=1

wFK
j Re

(
2

π
cos−1 yFK

j

)
T h
k (y

FK
j )

≤ ‖Re‖∞
m∑
j=1

wFK
j |T h

k (y
FK
j )|.

It follows from Theorem 3.6 that the polynomials grow at most like
√
k. Since

‖Re‖∞ ≤ ‖R‖∞, and because
∑m

j=1 w
FK
j = 1, the first result follows.

The reasoning for the odd part of f is analogous, except for the remainder term.
We have

QSK
k [Ro] =

m∑
j=1

wSK
j

Ro

(
2
π cos−1 ySK

j

)
√
1− (ySK

j )2
Uh
k (y

SK
j ).

The denominator is unbounded if ySK
j approaches 1. However, since Ro(x) is odd, we

may write Ro(x) = xh(x). The function

2
π cos−1 y√

1− y2
h

(
2

π
cos−1 y

)

is bounded on [0, 1]. Note that h(0) = R′
o(0) = R′(0) and, since Ro(0) = 0, we may

bound h(x) by ‖R′‖∞. From Theorem 3.6, the polynomials grow at most like k. The
second result follows.

Theorem 5.1 states that one should choose n+ 1 quadrature points for the com-
putation of ak, k = 0, . . . , n, and n quadrature points for the computation of bk,
k = 0, . . . , n − 1. If explicit expressions for fe and fo are available, then one re-
quires 2n+ 1 function evaluations to compute these 2n+ 1 coefficients, using expres-
sions (5.2)–(5.3). Note that evaluations of fe and fo may be reused for varying k.
If such expressions are not available, then one requires 4n+ 2 evaluations of f using
expressions (5.4)–(5.5). The total computational complexity in both cases scales as
O(n2). There is, unfortunately, no simple connection to the FFT for constructing the
expansion in O(n log n) computations as in the case of Chebyshev expansions [30].

The convergence rate of the quadrature scheme is governed by the results of sec-
tion 3 on the possible decay rate of the remainder term R for increasing n. Compared
to these results, the loss of convergence rate by a factor of n1/2 or n is observed, which
is due to the growth of the orthogonal polynomials in [−1, 1]. These bounds are rather
pessimistic, since the polynomials are, in fact, bounded in the interior of [0, 1]. Yet,
they already show that an exponential rate of convergence can be maintained up to
algebraic factors.
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5.4. Numerical results. All quadrature rules were computed numerically as
follows. The three-term recurrence coefficients of the two families of orthogonal poly-
nomials were computed to high precision in Maple. The corresponding Gaussian
quadrature rules were then computed based on the Golub–Welsch algorithm [16].
The latter computation was performed in double precision in MATLAB.

Several computational results were already shown earlier in this paper. The exact
solution for the functions f(x) = 2x2 + 3x + 1 and f(x) = cos cos π

2x + sin sin π
2x

was shown in Figure 4. Note that the quadrature approximation agrees with the
theoretical convergence rate E−n for the former function, and that the quadrature
approximation converges faster than exponential for the latter. Accuracy close to
machine precision was shown for f(x) = x in Figure 6 and for f(x) = 1

1+2x2 in
Figure 7.

We supplement these examples with a small comparison of several quadrature
rules, noting that the convergence rates are loosely indicative of the performance of
the underlying approximation scheme. In particular, we compare classical Gaussian
quadrature (related to Legendre expansions), Clenshaw–Curtis quadrature (related
to Chebyshev expansions), and the newly constructed Fourier extension quadrature
defined by (5.1).

Gaussian quadrature and Clenshaw–Curtis quadrature were compared extensively
in [29]. We added Fourier extension quadrature to six examples given in that paper.
The results are shown in Figure 12. The first four examples are analytic functions, the
fifth is C∞, and the final one is C2. One observes in panel (a) that Fourier extension
quadrature is not exact for polynomials. Panel (b) shows slightly slower convergence
of Fourier extension quadrature for an entire function, because its convergence rate
is bounded. Fourier extension apparently outperforms the other methods for exam-
ple (d) with nearby poles. Still, the differences are small, and all results are quite
comparable.

Results are quite different, however, when integrating oscillatory functions. Fig-
ure 13 shows the quadrature approximation for cos(40x), the Bessel function of the
first kind J0(30x), and the function cos(25x2). In the first two cases, Fourier ex-
tension quadrature converges faster than Gaussian quadrature and much faster than
Clenshaw–Curtis quadrature. Note, however, that the function J0(30x) has harmonic
oscillations like a cosine. The function cos(25x2) has oscillations that are less har-
monic. In that case, Fourier extension quadrature and Gaussian quadrature perform
very similarly, but Clenshaw–Curtis is still much less accurate. For completeness, we
like to point out that significantly more efficient methods exist for evaluating oscilla-
tory integrals (see, e.g., [20]).

Interestingly, the convergence plots of Clenshaw–Curtis quadrature in Figure 13
exhibit a kink for each of the three examples. This phenomenon was described and
analyzed in [31] for functions with a singularity in the complex plane. It was concluded
that Clenshaw–Curtis quadrature converges at the same rate as Gaussian quadrature
up to a certain n, depending on the location of the nearest singularity. However, the
three examples given here are entire functions.

6. Concluding remarks. It is perhaps not surprising that nonperiodic func-
tions can be represented as a trigonometric series by altering the periodicity. It is
surprising, however, at least in our opinion, that such series can be exponentially ac-
curate. We focused in this paper on a constructive convergence theory for such series,
which led to Chebyshev-like orthogonal polynomials.
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Fig. 12. Comparison of Gaussian quadrature (+), Clenshaw–Curtis quadrature (�), and
Fourier extension quadrature (×) on [−1, 1].

Two associated numerical methods were studied. A numerical least squares
method leads to hideously ill-conditioned matrices and produces a solution that does
not resemble the exact least squares solution to Problem 1.1. Yet, it approximates f
to machine precision on [−1, 1], at least with a collocation approach. Second, the true
solution can also be computed by exploiting the link with orthogonal polynomials and
the associated Gaussian quadrature.

It appears that the results in this paper can be generalized to several bounded
domains in higher dimensions. Preliminary results suggest that exponentially accu-
rate Fourier series can be constructed for functions defined on triangles, tetrahedra,
and even higher-dimensional simplices. The path towards generalization lies in the
connection to eigenfunctions of the Laplacian and in the use of symmetries of these
domains. This is an active topic of further research.
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(a) f(x) = cos(40x).
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(b) f(x) = J0(30x).
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(c) f(x) = cos(25x2).

Fig. 13. Comparison of Gaussian quadrature (+), Clenshaw–Curtis quadrature (�), and
Fourier extension quadrature (×) on [−1, 1].
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