
Component-based Open Middleware supporting

Aspect-oriented Software Composition

Bert Lagaisse & Wouter Joosen

Dept. of Computer Science, K.U.Leuven, Belgium,
{Bert.Lagaisse, Wouter.Joosen}@cs.kuleuven.ac.be

Abstract. State-of-the-art middleware for component-based distributed
applications requires openness to support a broad and varying range of
services. It also requires powerful and maintainable composition between
application logic and middleware services. In this paper we describe Dy-
MAC (Dynamic Middleware with Aspect-Components), a component
and aspect-based middleware framework that supports component-based
development of middleware services and offers the power of aspect-oriented
composition to connect the application logic to the middleware services.
We discuss the issue of a lack of expressive power in the contracts of
components and aspects when combining component-based and state-
of-the-art aspect-oriented development. We describe how the DyMAC
framework offers a component model that solves this problem with as-
pect integration contracts.

1 Introduction

Software systems nowadays often have a complex distributed architecture. Non-
functional requirements like availability or security therefore involve complex
support based on distributed algorithms. A typical example is a large-scale dis-
tributed application with distributed transactional behavior and a centralized
authentication server. The goal of a middleware layer is to isolate this com-
plex support from the functional application logic. We focus in this paper on
component-based systems that offer support for designing the application logic
of distributed applications. An example of such a component framework is Enter-
prise Java Beans [11]. The middleware layer we envisage for such a component
framework is a set of services that supports the implementation of the non-
functional concerns. Our DyMAC framework offers support for two important
challenges that state-of-the-art commercial middleware layers still are troubled
with.

1. First, the services offered by current middleware layers and platforms are
often a closed, limited set. They are not, or only in a limited way adaptable
or extensible. Such middleware can be seen as a kind of black box [3]. But
the different requirements of software developers towards the middleware
layer are often application specific or beyond the provided services of the
middleware. This requires that the middleware is extensible with applica-
tion specific middleware services. But also the different requirements of the

simultaneous end-users of the application require new and potentially con-
current versions of certain middleware services [16]. Also updates of existing
services of the middleware layer occur frequently. All these new require-
ments involve adaptability and extensibility of the middleware layer. It has
to evolve from a black box to an open framework where middleware services
can be adapted and added.

2. The second problem is situated in the composition of the application logic
with the middleware services. The composition logic for services like trans-
actions and security is strongly intermixed with the application logic. The
composition problem with such concerns is often referred to as the crosscut-
ting concern problem [4].

Both component-based as well as aspect-based software engineering tech-
niques can contribute to a solution. The first problem can be addressed by in-
tegrating properties of component-based software development (CBSD)[1]. The
second problem can be tackled by applying concepts from aspect-oriented soft-
ware development (AOSD)[4]. AOSD is a promising technology for the problem
of crosscutting concerns. Middleware and non-functional development concerns
are part of the key application domain of AOSD research [9] [10]. In this pa-
per we discuss the DyMAC middleware framework that offers a solution for the
challenges mentioned above by combining the advantages of CBSD and AOSD.

The paper is organized as follows: in the second section we summarize how
aspect-oriented software design and component-based software design can con-
tribute to a solution for the challenges we mentioned above. In the third section
we discuss the problems that are introduced by combining the two software
development paradigms. The fourth section illustrates these problems with an
example. In the fifth section we describe our DyMAC framework. In the sixth
section we compare our solution with the related work in the research domain.
Finally, we conclude.

2 The Promise of Integrating Advantages from CBSD

and AOSD

In this section we summarize how CBSD and AOSD can contribute to a solution
for the challenges we mentioned above. First we explain how component-based
techniques can offer extensibility and adaptability of the middleware layer. In
the second subsection we explain how aspect-based software composition can
contribute to the problem of crosscutting composition logic.

2.1 Component-based Open Middleware

Our first goal is to define a modularly adaptable and extensible architecture for
middleware platforms. This includes a definition of the best unit of modularity
for a middleware service. It should be possible to make a middleware service
deployable and reusable as one software unit. Component-based software de-
velopment brings a unit of modularity that can achieve our first goal. In [1] a

software component is defined as a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties. A
component-based approach to a middleware platform, where middleware services
are modularized as software components, meets the requirements of extensibil-
ity and adaptability. Middleware services can be developed by third parties as
components and can be deployed into a middleware framework. Composition of
application logic with the middleware services (which are components) can be
realized using the connectors of the provided interface.

However, the connectors of the provided interfaces of components are often
methods. This is a consequence of the object-oriented design on which a lot of
component frameworks are based. The calls to the provided methods of the mid-
dleware service are scattered throughout the application logic, and this causes
the problem of crosscutting composition logic.

2.2 Aspect-based Middleware

Aspect-oriented software design is about modularizing crosscutting concerns.
Aspects are first class entities that encapsulate a certain behavior (often called
advice) and also the instructions on where, when and how to invoke this be-
havior [4]. Aspect-oriented programming languages offer special programming
constructs to specify well localized places in the structure or execution flow of
an application. These places are called join points and depend on the main de-
composition paradigm of the application. In an object-oriented application, join
points can be method definitions, method calls, access to private class members,
constructor calls . . . The programming constructs that can define a set of those
join points are called pointcut designators. These pointcut designators are the
key for enabling the modularization of crosscutting concerns. They provide a
way to talk about doing something at many places in a program with a single
statement (also called quantification [6]).

An aspect-based approach for the composition of application logic and mid-
dleware services offers a solution for the problem of crosscutting composition. It
is even possible to manipulate internal application logic and application state,
e.g. by accessing and modifying internal class members. From one point of view
this could be interesting, because middleware services sometimes need access
to the internal state of the application logic, e.g. for persistence, state synchro-
nization in load balancing systems or state transferal in fail-over systems. But
from another point of view, access to the whole internal structure of an applica-
tion breaks encapsulation and can cause a lot of unforeseen problems, which are
discussed in the next section.

3 Technical Challenges When CBSD Meets AOSD

A lot of recent research in aspect-oriented software development is situated in
the domain of the integration of AOSD and CBSD (Caesar [14], JasCo [13], JAC
[12], JBoss/AOP [15]). This integration of AOSD and CBSD is twofold.

1. A first facet of the integration is integrating AOSD into CBSD. This includes
offering support for aspect-oriented composition in a component-based sys-
tem.

2. A second facet of the integration is applying the principles of CBSD onto
AOSD software modules. Aspects itself should be handled as components.

In this twofold integration, aspects evolve into a concept of software modules
combining the advantages of components and aspects. We shall call these new
software modules aspect-components. A typical form of aspect-components is
that they encapsulate the advice of an aspect. The interface of an aspect-
component provides connectors that make it possible to superimpose the advice
on join points in the base components, which are often object-oriented. The kind
of advice that the aspect-components can provide is before-advice, after-advice
and around-advice [5]. The actual composition of the base components with the
aspect-components is specified separately in the composition logic that composes
the different components into an application. In this composition logic the base
components and aspect-components are connected using pointcut designators
that define the set of join points where the aspect-component is superimposed.
In the remainder of this section we first discuss the problems that occur when
combining the advantages of components and aspects into this new software
module.

When composing multiple software components, one of the important issues
is managing interference. This means one needs to express and control which
modules may use and affect each other. In an object-oriented or component-based
software design, each artifact can be equipped with a contract that specifies the
provided functionality and the needed (required) functionality that describes the
dependencies of a component on other components. In principle, correct behavior
can be guaranteed if a component has been designed defensively and if it strictly
implements its contract. When aspect-oriented composition is applied, this is no
longer guaranteed. The composition of a component with an aspect can cause a
component to no longer meet its contractual obligations.

We observe that the state-of-the-art notion of a contract is no longer suf-
ficient in an aspect-oriented programming environment. When a component is
composed with an aspect by means of superimposition, there is no expressive
power to specify the following:

1. The component must specify what the component provides towards the as-
pect, i.e. which interference is permitted from certain (types of) aspects.
Aspects are often services that are orthogonal with the components func-
tionality, and therefore, the component’s contract and provided interfaces
are not always suitable for composition with an aspect. Therefore the con-
tract of the component needs to be extended with the required expressive
power about composition with aspects.

2. An aspect must specify what the aspect requires from the components it is
applied to and which behavior it provides. This also includes in which way
it affects those components.

These two facets of the lack of expressive power are explained hereafter. The
most important consequences of these shortcomings are also shortly discussed.

The first lack of expressive power : the component contract. The first lack of
expressive power is problematic in combination with certain join point models
of aspect-oriented technologies. The join point model is the set of possible places
in the structure or execution flow of an application that can be localized by the
aspect language to apply certain behavior. In current state-of-the-art aspect-
component technologies, we can distinguish two approaches to join point models:

1. Some aspect technologies allow complete, uncontrolled access to the whole
internal implementation of the (component-based) application logic, overrid-
ing all scope modifiers and breaking encapsulation. This approach neglects
the provided interfaces of the component because of the orthogonality of the
component and the aspect. This can lead to uncontrolled semantic inter-
ference. This uncontrolled semantic interference of an aspect with the base
component can cause undesirable exposure and modification of data and un-
desirable exposure and modification of behavior. A more detailed illustration
of these problems is elaborated in [17].
A second problem with providing the whole implementation structure of the
component as an interface towards aspects is that it also makes an aspect
too strongly tied to the component and therefore reusability of the aspect is
compromised. It is clear that the notion of provided interface towards aspects
must respect a certain form of encapsulation to achieve reusable aspects and
adaptable application components.

2. Other aspect technologies limit the join point model to the interface of a func-
tional component that is provided towards other functional components (e.g.
in JasCo [13] only public methods of a Java Bean are a possible join point for
aspects). From our point of view, where aspect technology is used for com-
position with middleware services, this approach is not powerful enough.
Because, as mentioned above, middleware services sometimes need access to
the internal state of the application. An example of this need is illustrated
in the next section.

The second lack of expressive power: the aspect contract. State-of-the-art aspect
technologies do not offer the possibility to contractually specify an aspect. There
is also no clear notion of what really defines the interface of an aspect. This lack of
expressive power is problematic in order to obtain a notion of aspect-component.
An aspect should be able to include in its specification what it requires from
other components, other aspect-components and the underlying platform. The
specification should also include what functionality the aspect provides and in
which way it affects the components it is composed with.

The scope of this paper is the composition of a component with an aspect-
component and hence we focus on the specification of aspect-components con-
cerning their requirements towards the base components and how they affect
those components. In the example in the next section we illustrate these two
needs of expressive power.

4 Illustration

To explain the problems above we illustrate them with a rather pedagogical
example. Suppose that an entity person is the key abstraction in a software
system. A person is uniquely defined by his social security number and has a
name and a birth date. The software entity person also provides an inspector
isAdult to check if the person is an adult. Because of privacy reasons a person
object should never expose its age or birth date. But it is a necessary property
to know whether a person is an adult. The birth date also needs to be stored in a
database. If the persistence service is delivered as an aspect, then the persistence
aspect needs access to the birth date property, while other software entities
should not be able to access this property. The code of the person and the
persistence example is shortly illustrated below in Java and pseudo-Aspect/J
[5]:

public class Person{
private Date birthDate ;
private St r ing name , ssn ;

public Person (St r ing ssn , S t r ing name , Date birthDate){
// i n i t i a l i z a t i o n }
private void setBirthDate (Date bd){}
private Date getBirthDate { . . . }
public void setName (St r ing name){}
public St r ing getName () { . . . }
public St r ing getSsn () { . . . }
public boolean i sAdul t (){
// derived from birthDate }}

Aspect Per sonPer s i s t ence {
//on constructor execut ion in s e r t in to database
a f t e r (Person p) : execut ion (Person .new (. .)) && this (p){

DataBase . i n s e r t (p . ssn , p . name , p . b irthDate) ; }
// a f t e r mutator execut ion update database
a f t e r (Person p) : execut ion (∗ s e t ∗ (. .)) && this (p){

DataBase . update (p . ssn , p . name , p . b irthDate) ;}}

The contract of the person class certainly specifies that it provides the isAdult

functionality. Towards other modules the birth date property remains hidden.
However, this property has to be exposed towards the persistence aspect, be-
cause that aspect requires person to expose encapsulated state that needs to be
persistent. Therefore the contract of the persistence aspect must specify that it
requires access to the encapsulated (i.e. private) state of a person object. The
aspect also needs to specify how it affects the state: will it inspect and/or modify
the state.

This section described an example that illustrated the lack of expressive
power in the specification of the functional components as well as in the specifi-
cation of the aspect. In the next section we describe how the component model of
DyMAC offers the kind of component types to support aspect-oriented compo-
sition. We also describe how the component model offers the expressive power in
the specification of components and aspect-components to tackle the problems
we discussed.

5 DyMAC: Dynamic Middleware with Aspect-

Components

DyMAC is an initial step in our search for a component-based open middleware
framework with support for aspect-oriented composition. In this section we first
describe the structure of DyMAC applications and the different abstractions
into which a DyMAC application can be decomposed. In the second subsection
we explain how we applied the principles of component-based software develop-
ment to those abstractions mentioned in the previous subsection. In this way we
achieve component-based building blocks for applications. We also discuss the
specification of the components that relates to aspect-oriented composition with
other components. Next, we explain how applications can be composed out of
those component-based building blocks and how aspect-oriented composition is
supported.

5.1 Structure and Overview

The top-level architecture of a DyMAC application can be described as a dis-
tributed and layered architecture. As mentioned in the introduction and moti-
vation, the domain of our research is middleware for complex distributed appli-
cations. A DyMAC application consists of different subsystems that are running
on different nodes in a network. A second property of the top level architecture
is its subdivision into two layers: A functional layer on top and a middleware
layer underneath. The functional layer contains the core application (or business)
logic. The middleware layer offers non-functional services. In [2] a layer is defined
as a coherent set of related functionality. In a strictly layered structure, layer n
may only use the services of layer n-1. In practice this structural restriction is
often lessened; Layers are often designed as abstractions that hide implementa-
tion specifics below. This latter approach is also what applies to the middleware
layer in DyMAC. Sometimes application specific information is needed from the
functional layer towards the middleware layer (recall the person persistence as-
pect). This can cause up-calls from the middleware layer to the application logic,
which breaks the restriction of strictly layered structures.

Each layer in the architecture of a DyMAC application further decomposes
into abstractions that are the basic building blocks for the applications. In the
remainder of this subsection we describe these abstractions and their main func-
tion. In the next subsection we elaborate on how these abstractions can be
specified as components to achieve a component-based decomposition.

Functional Layer Decomposition. The functional layer contains two kinds
of components: functional components (abbreviated to funcos) and client com-
ponents (shortly called clients).

A funco abstracts a key concept of the functional domain. It provides a
constructor to instantiate objects that can have a certain state and that provide
certain operations. An object of a functional component can send a message to

Node

Functional Layer

FunctionalComponent C

Middleware layer

Connector Components

Middleware Services

InterfaceC

Extension A

MiddlewareService A1

MiddlewareService A2

Connector A

before

after

Extension B

Connector B

MiddlewareService B1

MiddlewareService B2

before

after

IState

IA1

IA2

Fig. 1. Different component types in the DyMAC framework

another object of any functional component to invoke an operation. That other
object sends a return message with the result of that operation.

Client components are a special kind of funcos. They only provide one oper-
ation: an entry point for starting the execution of an application.

Middleware Layer Decomposition. The middleware layer consists of a col-
lection of middleware extensions that offer non-functional services to the func-
tional layer of the application. The middleware layer has a 2-layer architecture.
On the lowest layer it has a service layer, providing the different middleware ser-
vices, on the highest layer it contains connectors, which are used to connect the
functional components to the middleware services. Thus, a middleware extension
typically consists of a collection of connectors and middleware services.

The service layer is decomposed into middleware service components. These
components are abstractions of the different non-functional services in the service
layer. Alike functional components, middleware services can be instantiated and
can have state and behavior. Possible examples of middleware services are an
encryption service or an authentication service.

The connector layer is decomposed into connector components. A connector
component encapsulates the (otherwise crosscutted) calls to the middleware ser-
vices. The state of the funcos and the runtime arguments of invoked behavior on
funcos are possible arguments of the connector’s invocations to the middleware
services. Therefore a connector component has to be able to inspect and mod-
ify the state of a component in the functional layer, but it also has to be able

to inspect and modify the messages that are sent between the components in
the functional layer. The connectors use the middleware service components to
apply the non-functional services to the functional components. The connectors
can intercept any message that is sent and add behavior before and after they
forward the message to its destination. They can also alter the message or even
block it. The technique of interception is a widely used mechanism to achieve
aspect-oriented composition. Further is illustrated how these connectors provide
a mechanism for quantification.

Decomposition into extensions. The middleware layer is decomposed into mid-
dleware extensions. These middleware extensions contain a set of caller-extensions
and callee-extensions. Caller and callee refer to the sender and receiver when a
message is sent between two functional components.

– Caller extensions itself consist of a collection of connectors that can intercept
outgoing messages of funcos and a collection of middleware service compo-
nents needed at the caller-side.

– Callee extensions itself consist of a collection of connectors that can intercept
incoming messages and a collection of middleware service components needed
at the callee side.

5.2 Component Types

Each abstraction in the framework has to be modularized in the form of a compo-
nent, i.e. a unit of composition with contractually specified interfaces and explicit
context dependencies only. Each abstraction should be deployable independently
and can be subject to composition by third parties. We believe only strict com-
pliance with Szyperski’s definition, which contains the basic principles to achieve
a true component-based architecture, can eliminate today’s problems that are
involved with aspect-oriented composition. In the description of the component
model we will focus on the specification of the functional components and mid-
dleware extensions as units of composition with contractually specified interfaces
and explicit context dependencies. Especially we will elaborate on the provided
interface of a functional component towards a middleware extension and the
dependencies of a middleware extension towards a functional component.

Functional Components. A funco abstracts a key concept of the functional
domain. We discuss the interfaces and the contracts of a functional component
and especially focus on the interfaces and contracts towards the middleware
extensions. Because the description of client components is analogue we will not
elaborate on them.

Requirements and provisions towards other functional components. As a com-
ponent a funco has to specify its provided ans required interfaces. The provided
interface specifies the operations that it provides towards other components in
the functional layer. This provided interface consists first of a specification how

to instantiate the component, and secondly it contains the provided methods on
instantiations of the component. The required interfaces are the dependencies of
the component. They specify the operations that are required of other functional
components in the system.

Requirements and provisions towards middleware extensions. The aspect inte-
gration contract of the functional component specifies what its requirements and
provisions are towards middleware extensions. This specification contains where
the functional component requires, allows or denies interference of middleware
extensions.

First a functional component specifies which middleware extensions it re-
quires: e.g. a transaction around some of its method-implementations. So this
part of the contract specifies which middleware extensions the component needs
to function properly. These required extensions are typically needed by the im-
plementation of the component. To avoid intermixing non-functional develop-
ment concerns in the implementation of the functional component, these con-
cerns are specified in the requirements part of the aspect integration contract.
In other aspect technologies, the concept obliviousness [6] is often used to argu-
ment that non-functional development concerns should be completely separated
of the functional components. In case of required services to function prop-
erly, keeping the whole functional component oblivious to this need would mean
an essential deficit in the specification of the component. We believe that the
concept of obliviousness of non-functional middleware services only applies to
the implementation of the component, and not the specification of it. Of course,
non-functional services that are not required to function properly should be kept
oblivious of the whole functional component: implementation and specification.

The interface that a functional component provides towards the middleware
layer underneath is a little more complex. It contains the incoming and outgoing
messages that can be inspected and modified, and also the different members
of the state that can be inspected or modified. These two parts of the provided
interface need some explanation:

1. The provided interface towards the functional components mentioned above
defines the collection of incoming messages. The required interfaces define
the collection of outgoing messages.

2. The state of a funco is defined by the properties of the component. These
properties are defined by a get and set operation that access the internal rep-
resentation, which is one or more private class variables. Using properties to
decouple the state of a funco from the actual representation allows changes
to the representation without affecting the provided state members. These
state properties are not directly accessible by the middleware extensions, but
all funcos provide an interface towards the middleware layer underneath to
inspect or manipulate the state of a funco. This interface is a reflective back-
door/callback interface for the connectors in the middleware layer. It defines
operations for inspecting the state and to modify the state. This enables de-
coupling of the middleware extension from a specific functional component

and makes it reusable for other applications. Providing this generic interface
to access the state also restricts the access of the (aspectual) middleware ex-
tensions to the internal part of the functional component that the middleware
extensions actually need to access. This is a strongly restricted interface in
comparison with some aspect technologies that provide the whole implemen-
tation structure of the functional component (E.g. The implementation of
the operations). When comparing it to the more restrictive aspect technolo-
gies, that do not provide a way to access the internal state of a component,
this approach certainly offers advantages.

The allowed interference (state inspection and modification and behavior inspec-
tion and modification) can be specified in two ways.

1. For each middleware extensions and for each of the funco’s members (behav-
ior or state) it can specify if inspection or modification is allowed. This first
approach was explained in detail in [17]. It offers the most detailed possibil-
ity to control the interference by middleware extensions but it does limit the
extensibility of the application. It also makes it impossible to keep certain
middleware services oblivious from the functional component. Therefore a
more generic way of specifying interference is also possible.

2. The funco specifies a subset of its behavior and its state that is considered
sensitive. Only middleware extensions that are marked privileged by the
deployer can interfere with this sensitive behavior and state.

An example in DyMAC.NET. Recall the example with the person component.
We shortly list the code of the functional interface and the implementation of
the person component in the .NET implementation of the DyMAC framework.
The functional interface of the component consists of a C# interface specifying
how to instantiate a person, a second C# interface specifying the methods it
provides and a third C# class that implements the specified interfaces. This im-
plementation also specifies the state properties and the internal representation.

This implementation has to provide a constructor with the same arguments as
specified in the specification of the instantiation (IPersonCreate). The DyMAC
framework uses this constructor to instantiate the component when the DyMAC
instantiator is called. The DyMAC instantiator is a static method with a variable
numbers of arguments. In this way it can easily be used to instantiate any
functional component.

public interface IPersonCreate{
IPerson c r ea t e (s t r i n g ssn , s t r i n g name , Date birthDate) ; }

public interface IPerson{
s t r i n g getSsn () ;
void setName (s t r i n g name) ;
s t r i n g getName () ;

public class Person : FunCo , IPerson {
public Person (s t r i n g ssn , s t r i n g name , Date birthDate) { . . . }
private Date BirthDate{
get { . . . }
s e t (Date value) { . . . }

}
. . . }

For the specification of components in DyMAC.NET we use XML-files. It
contains the name of the component, the provided interfaces, the required in-
terfaces, the implementation, and the aspect integration contract. The current
form of an aspect integration contract in DyMAC specifies the members of the
component that are provided to normal middleware extensions and the sensi-
tive members that are only provided towards privileged middleware extensions.
The members of a component can be constructors, methods and state members.
Specifying required middleware extensions is still part of our ongoing work.

The following example illustrates the structure of the specification and fo-
cuses on the aspect integration contract. All members of the component that are
related with the birth date are marked sensitive for inspection and modification.

<funco><name>Person</name>
<provided>...</provided>
<implementation>...</implementation>
<required>...<required>
<aspect-integration>
<provided> <!-- towards all aspect-components -->
<method>string getSsn()</method>
<method>void setName(string name)</method>
<method>string getName()</method>
<method>string askName(IPerson p2)</method>
<method>IPerson clone()</method>
<state>string name</state>

<provided>
<sensitive><inspect/><modify/>
<constructor>create(string ssn, string name, Date bd)</constructor>
<method>void setBirthDate(Date bd)</method>
<method>Date getBirthDate()</method>
<state>Date birthDate</state>

</sensitive>
</aspect-integration>

</funco>

The Service Layer Components. Middleware service components are speci-
fied in quite the same way as functional components. They specify their provided
interfaces towards the connectors and other middleware services. They also spec-
ify the interfaces they require from other middleware services they use.

The main difference is they don’t have to specify an aspect integration con-
tract. Aspect-oriented composition is only supported between the functional
layer and the middleware layer. A hierarchic aspect-oriented composition strat-
egy, where messages between service layer components can be intercepted is out
of the scope of this paper, but certainly not out of the scope of our ongoing
work.

When we return to the example, the interfaces and implementation of the
person persistence service are straightforward.

public interface IPe r sonPe r s i s t enc e { . . .
void i n s e r t (s t r i n g ssn , s t r i n g name , Date bd) ; }

public interface IPe r sonPer s i s t enceCrea t e {
IPe r sonPe r s i s t enc e c r ea t e () ; }

public class Per sonPer s i s t ence { . . .
public void i n s e r t (. . .) {
// in s e r t in to p e r s i s t en t s torage (database , XML− f i l e . . .)

}}

<service><name>personpersistence</name>
<provided>
<method-interface>IPersonPersistence</method-interface>
<create-interface>IPersonPersistenceCreate</create-interface>

</provided>
<implementation><class>PersonPersistence</class></implementation>

</service>

Connector Components. All connector components have the same provided
interface: a before and after method that contains the calls to the middleware
services before and after a message is sent or received.

The connector has to specify the set of middleware services it uses as re-
quired interfaces. As a second part of what is required for the connector, the
specification contains explicit dependencies towards the functional components.
This part of the connector’s requirements contains the different members of the
functional components that the connector depends on. Next to that, the con-
nector also specifies how it interferes with those members: i.e. inspecting and/or
modifying them. This interference can be specified on a per member basis or for
all members at once (as in the example below).

In its XML-file the connector also specifies if it applies to the caller or callee
side of the message it is superimposed on. Depending on the side that the message
is superimposed on, a reference to the functional object is provided. So the
connector can inspect or modify the state of that object.

In the example we have to define two kinds of connectors: one for the con-
struction call to insert the person into the persistent storage and one for a
mutator call to update the persistent storage. We have illustrated the code of
the mutator connector and its specification file.

public class MutatorConnector : IConnector{
public void be fo r e (MessageCall mc , FunCo ob j e c t){}
public void a f t e r (MessageCall mc , ReturnMessage rm , FunCo ob j e c t){

IPe r sonPe r s i s t enc e ipp = DyMAC. c r e a t eS e r v i c e (” s e r v i c e / p e r s i s t e n c e ”) ;
s t r i n g ssn = (s t r i n g) ob j e c t . g e tS ta t e (”Ssn”) ;
s t r i n g name = (s t r i n g) ob j e c t . g e tS ta t e (”Name”) ;
Date bd = (Date) ob j e c t . g e tS ta t e (”BirthDate ”) ;
ipp . update (ssn , name , bd) ;}}

<connector><name>mutator connector</name><callee/>
<class>MutatorConnector</class>
<required>
<service>...</service>
<funco></inspection></modification>
<state>String Ssn</state>
<state>String Name</state>
<state>Date BirthDate</state>

</funco>
</required>

</connector>

Middleware Extensions as Components. Middleware extensions consist of
a collection of connectors and middleware services. The provided interface of the
middleware extension is first defined by the provided interfaces of the middleware

services it encapsulates and secondly by the connectors that it contains. The pro-
vided interfaces of the middleware services can also be used by the connectors
of other middleware extensions. These interfaces define the part of the provided
interface of the middleware extension that supports object-oriented composi-
tion. The connectors define the part of the provided interface of the middleware
extension that supports aspect-oriented composition. As illustrated below, the
specification of a middleware extension is a simple list of the components it
contains.

<extension><name>person persistence extension</name>
<connector>constructorconnector.xml</connector>
<connector>mutatorconnector.xml</connector>
<service>personpersistence.xml</service>

</extension>

5.3 Application Assembly

The different components of the application are assembled and composed by
means of a declarative specification. First, all components of the application are
enumerated by linking to the file with their specification. Secondly, the concrete
connections are specified between the functional components and the middle-
ware extensions of the application. In this connection, quantification is realized
by using pointcut designators to compose one or more messages of one or more
components with one or more connectors. In case multiple connectors are super-
imposed on a join point, they are invoked with the following precedence rules:
first the before advices from connector 1 to n are executed, and then the after
advices from connector n to 1.

In the example below, all extensions of the application are marked privileged.
But it is also possible to specify it more fine grained on a per extension, per
connection or per connector basis. The connections in the example are defined
in the scope of the persistence extension, therefore the used connectors in a
connection should be defined in the persistence extension. But in DyMAC, it is
also possible to define connections that are out of the scope of one extension and
that superimpose connectors of different extensions.

<application><name>PersonApplication</name>
... <!-- components in the application -->
<superimposition><privileged/>
<extension>persistence extension
<connection>
<component>Person</component>
<constructor>create(string ssn, string name, Date date)</constructor>
<connector>constructor connector</connector>

</connection>
<connection>
<component>Person</component>
<method>* set*(..)</method>
<connector>mutator connector</connector>

</connection>
</extension>

</superimposition>
</application>

In the initial problem statement, we defined middleware extensions as ap-
plication specific. Therefore extensions can only be connected to components

within the same application. It is our intention to extend the connections so it is
also possible to define system wide middleware extensions that can be connected
to funcos of other applications in the system.

How the deployment of the application is specified is beyond the scope of
this paper. In this deployment specification, the dependencies of all components
are bound to actual components in the system. The deployment specification
also allocates the different components of an application on the different nodes
in the network.

6 Related Work

Open ORB [3] starts from the same problem: the need for adaptable middleware
due to application specific needs. Their solution takes the form of reflective
middleware. It uses a reflective API to modify the middleware platform and
introspect its implementation.

JBOSS/AOP, JAsCO and JAC offer support for aspect-oriented composition
in a Java component-based system. They introduce the concept of aspects that
can be used to implement middleware services. But they do not support a true
component-based approach to the aspects itself. The base components in the
functional layer are not aware of possible interfering aspects, and cannot specify
in which way they want to control interference of aspects, e.g. by means of an
aspect integration contract as in the DyMAC framework. In these systems any
possible join point of each Java component can be superimposed with any aspect.

The join point model of JBOSS/AOP exposes a lot of the internal imple-
mentation of components. Possible join points are reads and writes to fields of
the class, but also calls of methods and constructors within the implementa-
tion of a method or constructor. This exposes details about the implementation
of the latter method or constructor. JAsCo limits its join point model to the
public methods and events of Java Beans. As mentioned earlier this limits the
possibilities for middleware extensions when they need access to the state of the
component.

In JAC, the pointcuts that specify where to superimpose an aspect are strings
in the code of the aspect, which limits runtime adaptability of the composition
logic. Externalizing and modularizing this composition logic in a declarative
specification offers better support to change the composition logic without re-
compiling the application.

Lasagne is a runtime architecture that enables dynamic customization of
systems. Based on client-specific needs and context properties it can select and
activate the different extensions in the system. These extensions have the form
of wrappers that implement the same interface as the components they are su-
perimposed on. Just like in the DyMAC framework, wrappers can add behavior
before and after the invocation of a method. Lasagne also lacks the expressive
power to specify which kind of extensions a base component allows. The com-
position logic of Lasagne is also specified in the meta data of the applications,
and not hard coded.

7 Conclusion

In this paper we discussed DyMAC (Dynamic Middleware with Aspect-Components),
a component and aspect-based middleware framework that offers adaptability
and extensibility. It supports component-based development of middleware ser-
vices and offers the power of aspect-oriented composition to connect the appli-
cation logic to the middleware services.

DyMAC solves the issue of the lack of expressive power in the contracts
of components and aspects and introduces a kind of aspect-component. It also
solves the too strong or too weak composition model of existing aspect-component
technologies with a more balanced composition model.

References

1. Clemens Szyperski, Component software: beyond object-oriented programming.
Second Edition. ACM Press/Addison-Wesley Publishing Co., New York, NY, 2002.

2. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison-Wesley, 2003.

3. G. S. Blair, et al. The design and implementation of OpenORB version 2. IEEE
Distributed Systems Online Journal, 2(6), 2001

4. Kiczales, G. et al. Aspect-Oriented Programming. In Proc. of ECOOP 1997.
5. Kiczales, G. et al. An Overview of AspectJ. In Proc. of ECOOP 2001.
6. R. Filman et al. Aspect-oriented programming is quantification and obliviousness.

In OOPSLA Workshop on Advanced Separation of Concerns, 2000.
7. Bertrand Meyer. Design by contract: building bug-free O-O software. In Hotline

on Object-Oriented Technology, volume 4, Number 2, December 1992, pages 4-8.
8. Andreas Rausch, Design by Contract + Componentware = Design by Signed Con-

tract. Journal of Object Technology, In Proc. of Tools Usa, 2002.
9. R. Bodkin et al. Applying AOP for Middleware Platform Independence. Practi-

tioner Reports, AOSD 2003.
10. Adrian Colyer et al, Large-scale AOSD for middleware. In Proc. of AOSD 2004.
11. Sun Microsystems, Inc. Enterprise Java-Beans (EJB) Specification v2.0, 2001.
12. R. Pawlak et al. JAC: A Flexible Solution for Aspect-oriented Programming in

Java. In 3rd International Conference on Meta-level Architectures and Separation
of Concerns (Reflection), volume 2192 of Lecture Notes in Computer Science, pages
1-25. Springer-Verlag, 2001.

13. D. Suvée et al. JAsCo: An aspect-oriented approach tailored for component-based
software development. In Proc. of AOSD 2003.

14. Mira Mezini et al, Conquering aspects with Caesar. In proc. of AOSD 2003.
15. JBoss AOP homepage, http://www.jboss.org/developers/projects/jboss/aop.jsp
16. E. Truyen, et al. Dynamic and Selective Combination of Extensions in Component-

Based Applications. In Proc. of ICSE’01.
17. B. Lagaisse et al. Managing Semantic Interference with Aspect Integration Con-

tracts. In workshop SPLAT’04, http://www.daimi.au.dk/ eernst/splat04/

