Internet infrastructure

Prof. dr. ir. André Mariën
Lightweight Directory Access Protocol
LDAP

Introduction
Directory

- Directory: searchable information repository
- The best known non-IT example is a telephone directory (the book)
 - Contains names, addresses, telephone numbers
 - Searchable by location and name
- Electronic variants
 - Also search by number, subparts, ZIP codes, ...

IT directories:
- Network configuration
 - Host to IP translation, user/password information, ...
- User information:
 - Telephone, email, certificates, physical location
- Security:
 - Authentication, authorization, SSO, PKI
- Resources:
 - Calendar, room reservations
Increasing requirements

• Consolidation of directories (N+1 problem)
 – Each new product comes with an extra directory
• Centralized management
 – Master data idea: manage once
• Consistency of information
 – Keeping copies in sync
• Access time
 – Critical resource: in stream
Example scenario

Web server

Web server

Application server

Personalization

Network logon

Certificate (SSLv3)

Authorization

Personalization

LDAP
Data modeling

- Data is modeled as a tree
- Multiple trees are possible (forest)
- Information is stored in ALL the nodes
- Nodes have a direct address
 - The address is content based
 - As much as possible: get data with direct address
Data modeling: example

• Users live in a country, belong to an organizational entity, and have a name

• Data of that user can be found simply:
 – Get data of “country=be, organizationunit=sales, name=V.Erkoper”

• The organizational unit can have data on its own, which can be obtained via
 – Get data of “country=be, organizationalunit=sales”

• The example assumes a tree with structure:
 – Top node
 – Country nodes
 – Organization units
 – Persons

• Any node’s properties can be accessed directly

• Need to understand the tree structure
Directory Information Tree

DIT graph

- o=kuleuven.ac.be
- ou=cs
- l=200A
- cn=André Mariën

18/03/2014

(c) A. Mariën
Directory Information Tree

• DIT is made up of entries or objects
• The names are based on standards
 – o : organization
 – C : country
 – ou : organizational unit
 – l : location
 – cn: common name
• Each of these is associated with a specific type of data
LDAP Objects

- An LDAP directory is built from objects
- Objects have an object identifier (OID)
- Objects have unique names
- Objects have attributes

Examples:
- People
- Resources: rooms, cars
- Groups: mailing groups
- Roles: for authorization
- Systems: machines, laptops, PDAs
- Rights: for authorization
- Certificates
Objects and Attributes

• Objects have attributes
 – Key/value pairs associated with the object

• Attribute have types
 – Predefined or custom (example: SSN)
 – Definition: syntax

• Attribute value: one or more values of the attribute type

• Order of attributes & values
 – undefined and implementation-dependent
 – MUST NOT be relied upon.

Examples

• Cn=billy the kid
• O=mafia
• C=krim
• Ou=blackmail
• Member=john
 member=paul
 member=ringo
 member=george
DIT and entries

- DIT
- Entries/Objects
- Attributes
- Values
Object Naming: DN - RDN

• Relative Distinguished Name (RDN)
 – One or more attribute values from the object form it’s relative distinguished name (RDN), which MUST be unique among all its siblings

• Distinguished Name (DN)
 – The concatenation of the RDNs of the sequence of entries from a particular entry to an immediate subordinate of the root of the tree forms that entry's DN
 – DN is unique in the tree
RDN

RDN: A,B
RDN P: A=1, B=2

RDN: C
RDN Q: C=1
Q

RDN: F, G
RDN R: F=1, G=1
RDN S: F=1, G=2

P
A=1, B=2

C=1, D=2
C=2, E=2

F=1, G=1, H=3
F=1, G=2, I=2
DN

DN P: A=1, B=2

DN Q: C=1, A=1

DN R: F=1, G=1, C=1, A=1, B=2
DN S: F=1, G=2, C=1, A=1, B=2
Important Attributes

• cn
• commonName
• name of an object
 – for a person, it is typically the person's full name
 – a webserver: its DNS name
 – a web certificate: an email address
Important Attributes

• o
 – organizationName

• ou
 – organizationalUnitName

• Attributes: address: c
 – country
 – two-letter ISO 3166 country code
Important Attributes

• l
 – localityName
 – locality: city, county, geographic region

• st
 – stateOrProvinceName
 – a state or province

• street
 – streetAddress
Important Attributes

• **member**
 – used in grouping constructs
 – also used for authentication and authorization
 – each value a DN of a 'member' object

• **owner**
 – links objects to object owner DN
 – example: devices to responsible
 – could be used as 'father' link in groups
Attributes

• person
• givenName
• initials
• generationQualifier
• sn
 – surname: the family name of a person.
• userPassword
Attributes: structural

• distinguishedName
 – a base type from which attributes with DN syntax inherit
 – not used as the name of the object itself

• uniqueMember

• name
 – attribute supertype
 – string attribute types for naming are derived from this; will not occur in an entry
Lightweight Directory Access Protocol

LDAP Search
Search Request

• **Where?** baseObject DN
• **Scope?** baseObject / singleLevel / wholeSubtree
• **Conditions?** filter
• **What?** list of attributes / '*': all
Search Request Scope

node

Whole subtree

One level
Filter: setting conditions

- boolean: and / or / not
- equalityMatch
- substrings: initial / any / final
- greaterOrEqual, lessOrEqual
- present
- approxMatch
- extensibleMatch: new in v3
String Representation of LDAP Search Filters

• RFC 2254

• Why an extra RFC?
 – LDAP defines a network representation
 – also wanted: search filters in a human-readable form

• String Search Filter Definition
 – prefix notation: (op operand1 operand2 ...)
Simple Filter

Filter: attribute \textit{filtertype} value

Filtertype:
 - Equal: "="
 - Approx: "\sim="
 - Greater: ">="
 - Less: "<="
 - Present: "=*"

Examples:
 - (cn=Mickey)
 - (objectClass=person)
Wildcard matching

Wildcard symbol: *

substring = attr "=" [initial] any [final]
initial = value
any = "*" *(value "*")
final = value

Examples:
 (cn=*andre*)
 (c=*germ*)
Filter: boolean operators

• Prefix notation
 – filter = "(" filtercomp ")"
 – filtercomp = and / or / not / item
 – and = "&" filterlist
 – or = "|" filterlist
 – not = "!" filter
 – filterlist = 1*filter
Example filters:

• (cn=Babs Jensen)
• (!!(cn=Tim Howes))
• (&(objectClass=Person)(|(sn=Jensen)(cn=Babs J*)))))
• (o=univ*of*mich*)
LDAP URLs
The LDAP URL Format

• RFC 2255: The LDAP URL Format
• defines a format for a LDAP Uniform Resource Locator (URL)
• models a LDAP search operation
URL Definition

ldapurl=
 "ldap://" [hostport]
 ["/"] [dn ["?"] [attributes]
 ["?"] [scope]
 ["?"] [filter] ["?"] [extensions]]
)

URL: elements
• hostport:
 – host:389
• starting point (base object):
 – dn: distinguishedName
• which attributes:
 – attributes = attrdesc *("," attrdesc)
• Scope = "base" / "one" / "sub"
 – node, one level, subtree

(c) A. Mariën
URL elements

Filter
• filter: text format search string
• additional (extra):
 – extensions = extension *(""," extension)
• default: (objectClass=*)
• all URL symbols: url encoded (%xx)

Authentication: "Bindname" Extension
• type: "bindname"
• value: DN of the directory entry to authenticate as
• dn == NULL string: unauthenticated access
Example queries

• Example 1
 • base object:
 – "o=University of Leuven, c=BE"
 • filter:
 – "(objectclass=*)"
 • all attributes
 • URL:
 – ldap://ldap.itd.umich.edu/o=University%20of%20Leuven,c=BE

• Example 2
 • return only attribute:
 – postalAddress
 • URL:
 – ldap://ldap.itd.umich.edu/ o=University%20of%20Michigan,c=US?postalAddress
Example queries

Example 3:
• subtree search
• common name: "Babs Jensen"
• all attributes:
• URL:
 ldap://host.com:6666/o=University%20of%20Michigan,c=US
 ?sub?(cn=Babs%20Jensen)

Example 4
• all direct children of the c=GB
• attribute: objectClass
• URL:
 ldap://ldap.itd.umich.edu/c=GB?objectClass?one
Example queries

Example 5
• attribute: mail
• object: "o=Question?,c=US"
• uses the URL encoding for character '?'
• URL:
 ldap://ldap.question.com/o=Question%3f,c=US?mail

Example 6
• interaction between LDAP and URL quoting mechanisms
• LDAP filter syntax:
 (int=\00\00\00\04)
• \ character must be URL encoded: \ -> %5c
• URL:
 ldap://ldap.netscape.com/ o=Babsco,c=US?%(int=%5c00%5c00%5c00%5c00%5c04)
Example 7

- bindname extension
- DN for authentication
- %2C -> "," %5C
- URL:

 ldap:///??sub??

 bindname=cn=Manager%2co=Foo
Simple testing

• There are free directory browsers available
• There are some public directories online
• Available @ 18/03/2014
 – Pkcsldap.tttc.de
 – X500.de
• !!! Behave !!!
• A test infrastructure will be set up @KULeuven
Object Classes
Object Classes

• Object must belong >= 1 object class
• Objectclasses determine the possible object attributes
 – mandatory: union of all mandatory
 – optional: union of all optional \ mandatory

The objectClass attribute
• Object must have an objectClass attribute
• Values: the object classes with which the entry complies
• Example:
 – ObjectClass=top
 – ObjectClass=person
objectClass attribute

Object instance of class “oc”

- objectClass=oc
- att1=v1
- att2=v2
- att3=v3
- att3=v4

Object class Object for “oc”

- DN=oc
- Must=att1
- Must=att2
- May=att3
Object Classes

• *abstract* class (examples: "top" or "alias")
 – similar to Java abstract class

• *structural* object class
 – normal classes

• *auxiliary* object class
 – similar to interfaces in Java
Attribute inheritance

• objectClass has a superClass
• “top” is the base objectClass
• Inheritance: if objectClass \(o \) has superClass \(s \) then
 – all attributes of objectClass and those implied by \(s \) are possible attributes of \(o \)
 – any mandatory attributes of \(o \) or implied by \(s \) must be present
Attribute Inheritance

objectClass=oc
att1=v1
att2=v2
att3=v3
att3=v4

DN=oc
Must=att1
SUP=sup
DN=sup
Must=att2
May=att3
Object Class: BNF

ObjectClassDescription = "(" numericoid
 ["NAME" qdescrs] ["DESC" qdstring]
 ["OBsolete"]
 ["SUP" oids]
 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY")]
 ["MUST" oids] ["MAY" oids]
")"
Object Classes

Class “top”
 • ABSTRACT
 • MUST objectClass

Class: “person”
 • SUP top
 • STRUCTURAL
 • MUST (sn $ cn) MAY (userPassword $ telephoneNumber $ seeAlso $ description)

Class: “organizationalPerson”
 • SUP person
 • STRUCTURAL
 • MAY (title $ registeredAddress $ destinationIndicator $ telephoneNumber $ internationalISDNNumber $ facsimileTelephoneNumber $ street $ postOfficeBox $ postalCode $ postalAddress $ ou $ st $ l $...)
Object Classes

Class: “organization”
- SUP top
- STRUCTURAL
- MUST o
- MAY (userPassword $ searchGuide $ seeAlso $ businessCategory $ telexNumber $ teletexTerminalIdentifier $ telephoneNumber $ street $ postOfficeBox $ postalCode $ postalAddress $ st $ I $ description $...)

Class: “organizationalUnit”
- SUP top
- STRUCTURAL
- MUST ou
- MAY (userPassword $ searchGuide $ seeAlso $ businessCategory $ telexNumber $ telephoneNumber $ street $ postOfficeBox $ postalCode $ postalAddress $ st $ I $ description $...)
Object Classes

Class: “groupOfNames”
- SUP top
- STRUCTURAL
- MUST (member $ cn)
- MAY (businessCategory $ seeAlso $ owner $ ou $ o $ description)

Class: groupOfUniqueNames
- SUP top
- STRUCTURAL
- MUST (uniqueMember $ cn)
- MAY (businessCategory $ seeAlso $ owner $ ou $ o $ description)