Identity and Access Management

Prof. dr. ir. André Mariën
There is a problem with IAM

• IAM projects are high-risk projects and at the same time critical improvement projects
 – High failure rates → management confidence ▼
 – IT business relationship ▼
 – Organizations that do not fail?
 • Often: expected benefits have not materialized
• What are the root causes of the difficulties?
 – Lack the right tools?
 – Inherent complexity?
 – Incompetent people?
Security lingo for objectives

• Ensure confidentiality
 – Confidentiality ≠ encryption
 – But access control is key for confidentiality
 • Encryption, key management: support for access control
• Ensure accountability
 – Link between the physical world (people of flesh and blood) with technical world
 (userID/password, certificate, token, claim, ...): crucial relationship
 – Manage privileges, but also manage privilege management
 – Accurate and comprehensive reporting
• Avoid conflict of interest
 – Identifying conflict of interest situations and defining duties with segregation constraints
 – Identity management must be enterprise wide:
 • link all logical instances to the actual, physical principal
• Ensure least-privilege
 – Only privileges that are needed, but when needed
 – Organizational agility: acquiring and dropping privileges follows business changes immediately
Business objectives

• Know you users
 – Manage their identities

• Ensure compliance
 – Accountability, data protection, duty segregation

• Prevent unauthorized access
 – Authenticated, Authorized, access control

• Affordable
 – Fit with business and IT reality
 – Maintainable and mostly automated
Your first decisions may put the whole program at risk

• Classify it as an IT project
 – All will go well in the development and implementation phase
 – Nothing but trouble near roll-out and production
• Decide on a company wide model, example: RBAC
 – Proof-of-concept test succeed
 – Roll-out and maintenance slowly turn into nightmare
• Pick a product, configure, do some role mining, done
 – Great plan
 – Try outs seem to work
 – Role mining produces on larger scale are less convincing
 – No underpinning of roles, so how to maintain?
Observations

• Identity space
 – multiple systems for managing identity information exist and are here to stay
 • spread across the organization
 • different vendors
 • different purposes
 – Fundamental to “identity” is its uniqueness, but many views coexist

• Business view
 – business must controlling access, but not all in the same way:
 • based on functions, tasks, organizational structure, ...
 • Force one way: sure to meet resistance
 – Business needs drive authorization and access control: the business need leads to authorizations and access granting

• Technology space
 – N+1 problem:
 • Every application, service, package: +1 for account repositories
 • New & enhanced authorization and access control model(s)
 – Ease of integration:
 • Some systems: immutable, really inert
 • others come and go, or are replace by new ones with a different vision
Mickey mouse model

• Divide and conquer: Four domains
 – Identity management
 – Business privilege management
 – Technical authentication and access control
 – Enterprise privilege management: the domain linking it all together

• Core activities
 – Entity registration and correlation
 – Business privilege modeling and model population
 – Access control solutions and provisioning
 – Privilege management and privilege use
Four domains

• The three satellite domains must be able to evolve independently
 – Keep the center very stable
 – Maintain interfaces as much as possible
 – Absorb changes in the mapping on the borders (hinges)

• Minimize impact on other domains from
 – Changes in identity management solutions
 – Business unit reorganization, model for privilege management changes
 – Technology changes: new solutions, other provisioning, other repositories
Identity management

• Approaches
 – Registration authority, with local registration agents
 – Correlation extensions in the various solutions
 – “Master data management” approach

• Principle: Identity as root
 – Identity-rooted data modeling
 – Specific extensions
 • Technical identities, and link with accountable identity
 • Third party stub identities, and link with accountable identity
Privileges/rights: Phases

• Define
 – Vocabulary
 – Model

• Assign
 – Authorization

• Provision
 – Feed provisioning system with translated privilege data

• Control
 – Access control
Business privilege management

• Rooted in business
 – The privileges of an entity are a consequence of the business context

• Business units have multiple privilege models
 – Organizational Roles, Organizational structure, Task based
 – Professional certification or authorizations
 – Unstructured subsets (for instance workload driven)

• High level differences between
 – Unit type: HR, finance, sales, IT
 – Business: bank, insurance, trading

• Primary schemes:
 – Direct: assign privileges to identities
 – Chain: example: Role to tasks to privileges

• Approach:
 – Map business model to a limited subset of concepts
 • Example: functions, tasks, organizational units, accreditations
 – Map this subset to privileges: pre-authorization step
Technical authentication and access control

• Account management
 – Accounts as a consequence of privilege assignments
• Authorization often hidden inside applications
 – Model per application, no model at all
• Technical privilege modeling
 – Permissions: abstract specific implementation
 – Example: Three distinctions to make: user, supervisor, manager; implementations can vary:
 • Three classes of userIDs (Uxxx, Sxxx, Mxxx)
 • userID must be member of the right group
 • ACL contains userID
• Access control models
 – OASIS model provides solid base: policy (enforcement, decision, information, administration) points: PDP, PEP, PIP, PAP
 – More details later
• Provisioning, SSO, federation, exceptions, credential management
The four-world model
Process: business drives

• Processes and process design matter, a lot
• Move away from “request access”
 – Access granting is based on business decisions
 • No need to ask for an account
 • No need to check business reason for a request
 – Revert thinking: business decision implies granting access
 • Not: ask for access as a separate process
 • Changes in business imply granting the necessary access
• Task assignment, work unit assignment, … are business events at the basis of privilege changes
 – Should lead to privilege changes
 – Privilege changes should lead to account requests or removal
 – No need to “request” new or delete old privilege
Privilege processes

Administration

Privilege Definition

Privilege Assignment

Information Model

Privilege Control

Privilege Provisioning

Operation

11/3/2014

(C) A. Mariën
Sub problems and Aspects

<table>
<thead>
<tr>
<th></th>
<th>Definition</th>
<th>Assignment</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>What is it? Where is it? Kind of identity</td>
<td>How to introduce? When to assign? When to end?</td>
<td>Crosslink Existance Identity reference</td>
</tr>
<tr>
<td>Account</td>
<td>Realms Systems Types</td>
<td>Account management</td>
<td>Authentication</td>
</tr>
<tr>
<td>Rights</td>
<td>Model Model instances</td>
<td>Authorization</td>
<td>Access control</td>
</tr>
</tbody>
</table>
Automation

- Process: Three steps
 - Legitimate request for access?
 - Implied by business decision.
 - Derive situation from business data
 - Authorize access
 - Principle-based authorization, not case-based.
 - Modeling exercise: define privileges and mapping onto business attributes
 - Enable access
 - (Provisioning)
 - Update access control repositories to allow access.
 - Update account repositories
 - Update access control component database (PIP, PDP implementation)

- Business privilege assignment
 - Based on principles
 - “All employees are authorized to access email”
 - “Only personnel in HR has access to personnel records”
 - “Only managers have access to evaluation reports”
 - Based on business information sources
 - “is an employee”
 - “works in HR”
 - “is a manager”
 - “is a certified accountant”
 - Automatic:
 - No approval delays for automated privilege assignment
 - Privilege removal: as soon as business context changes
 - Responsibility:
 - Direct impact on operational rights
 - Change throttling/buffering
Additional complexity

- **Constraints**
 - Incompatible privileges cannot be combined
 - Important objective for business
 - Issues: where to check? When to check? Override?

- **Contexts (mobile workforce, different commercial contexts)**
 - Privileges assigned in context require context verification (acting for, from, ...)

- **Delegation (illness, holiday)**
 - Delegation as normal business practice
 - Not exceptional
 - Not via credential passing

- **Transitions (function change, role change, in/out)**
 - Transitions as normal business practice
 - Start working, move to different unit, move to different function
 - Change takes time
 - Coexistence of two situations
 - Controlled move

- **Parameterization**
 - Opaque parameters for specific business information transfer to access control components
 - Context information
Master data management

• One master
• Clearly determine which is the master
• Various set-ups possible
Management master with provisioning to slaves
Distributed repositories and management, with consolidation
Access control

• Parameters for access control
 – Requesting entity
 • Privileges
 • Account
 – Resource, target
 • Target
 • Action
 • Parameters
 – Owner, restrictions
 – Request
 • Context: time, channel, location
• Actual access control: how? XACML model
XACML Data Flow Model
OASIS XACML based view

- Differentiation: location of the Access Control Enforcement Point (PEP), Decision Point (PDP), Administration Point (PAP) and Information Point (PIP):
 - Provisioning Model (PAP[, PIP]):
 - privileges are translated into realm permissions and provisioned towards the different realm masters.
 - PDP, PEP: in the applications
 - Privilege Information Retrieval Model (PAP,PIP):
 - PDP, PEP: in the applications
 - But: PIP consulted to take decision
 - Centralized Privilege Control (PAP,PDP[,PIP]):
 - PEP: in the applications
 - PDP is externalized
 - possibly PIP consulted to take decision
Application interaction patterns

Unmodified/legacy application

Provisioning

Application

Authentication

Access control

Provisioning Driver

Provisioning Engine

privileges

permissions

EPM

11/3/2014

(C) A. Mariën
Application interaction patterns

• EPM
 – Maps account to permissions
 – Provides permissions to the application

• Application
 – Request permissions for an account
 – Interprets the permissions, and possibly other elements, to check if access is granted

Privilege information consumer
internal access control

11/3/2014
(C) A. Mariën
Application interaction patterns

- **EPM**
 - Maps account to permissions
- **Access control component**
 - Gets access request information (account, parameters)
 - Obtains permissions (with parameters) from EPM
 - Takes access control decision
- **Application**
 - Uses the access control component to get a decision
Application interaction patterns

Target: Externalized access control
High level security architecture

- Users
 - Registration
 - Request
 - Account management
 - Authorization
 - Requestors
 - Approvers
- Check: interception
- Check: enforcement
- Workflow
- Master Repositories
- Provisioning
- Audit Trail
- Auditor
- Application
- Local repositories
- Privilege control
- Authentication