Topic: Load balancing
High Availability

- Key property: availability
 - “high” is relative
 - Important to determine correctly
 - Cost of unavailability
 - Business continuity: how long can one accept unavailability?
- Key concept: single point of failure: SPoF
- SPoF examples
 - Network (one ISP, one network card, one switchboard, ...)
 - Power (one switch, one provider, ...)
 - Physical access (one door, one gate, one road ...)
 - People (only one person knows how to ...)
- Principle:
 - “No single point of failure”
- Major method to achieve: redundancy
HA: active - passive

- Capacity: 100%
 - Passive
 - Hartbeat link
 - Active
 - Capacity: 100%
 - 100% overcapacity
 - 100% OK after switch
 - Capacity: 100% overcapacity
 - 100% OK after switch
- Capacity: 70%
 - Active
 - Capacity: 70%
 - 40% overcapacity
 - 70% OK after switch
 - Load balancing
HA: crosses
HA: Two “trains”/”streets”
Disaster recovery – business continuity

Disaster Recovery

• Respond to disasters
 – System down
 – Disk crash

• Measures:
 – Recovery point objective
 • the maximum time period in which data might be lost
 • “lose 1 hour of data”
 – Recovery time objective
 • The amount of time the business can be without the service, without incurring significant risks or significant losses
 • “system unavailable for 1 hour”

• Options
 – Back-up/restore

Business continuity

• Major outage
 – IT site unreachable, destroyed

• Survival mode: minimal functions to survive, able to continue business

• Provide critical operational support

• Options:
 – Physically separated sites
 – Rented locations
 – Home working

• Types:
 • Hot standby: up and running in no time
 • Cold standby: capability
 • Infra only: deploy when needed
Back-up - archiving

Back-up
- Use: protection against data modification
 - Delete
 - Update
- Redundant copy
- Full – incremental
- Mostly On-line
- Use: restore

archiving
- Use:
 - Reduce on-line storage needs
 - Record keeping (requirement)
- Master data
- Incremental
- Mostly off-line
- Use: search
Load balancing

• Solve resource/capacity problem
• One system cannot cope with load
 – Put bigger system in place
 – Put a cluster in place
 – Use multiple systems: load balancing
Load balancing

Virtual server

client

LB

Server 1

Server 2

server3

Server 4

4/03/2014
Load balancer

- Hides the fact that there are multiple servers
- Presents itself as THE server (virtual server)
- Determines “best” system to handle
 - “Best” system to handle requests based on request and system information
 - Expected load
 - Current load of systems
- But: may not look at either, and count on statistical balancing (round robin)
Load balancer: dealing with stickyness

• Servers may need to get multiple requests to not brake the transparency, or just plain work

• Issues:
 – Sessions, state

• Example: IP packet of one TCP session must go to same server in a standard implementation

• http sessions must be handled by the same server for vanilla web servers
Sticky sessions

First req

Next req

First req

Next req
State in client – stateless operation

First req

Next req
Client state

• Need to communicate all of the state each time
 – Overhead
 – size limitations
 – Multiple requests to different servers => independent state management possible (possible conflicts)

• Some state data is critical for server security
 – Logged-in user, authorizations

• State protection:
 – Protect confidentiality, integrity
 – Encryption, one key to manage them all?
Load balancing

• Servers have resource limitations

• Objectives:
 – Scalability
 • Servers have resource limitations, a single server has maximal load points
 • OS level (multiprocessor, clusters): expensive
 • Add or remove additional servers transparently
 – Availability
 • Replace defective components: only subset of users impacted
 • But not High-Availability (HA): other measures required

• Secondary
 – Transparency
 • “Virtual server”
Load Balancing solutions

• Effective load balancing:
 – Measure availability
 • Health monitoring
 • System availability: ping
 • Service availability: service ping
 – Measure “load”
 • Load = resource usage: CPU, disk, ...

• Transparency
 – Server side state
 • Managed on a server instance:
 – requires persistence
 – Each packet /message of connection to same server
 – Problem with higher level sessions (higher than LB mechanism)
 • State distribution
 – Central state store (new problem point)
 – Cost of state migration
General principle

Map:
C-S: VS-RS

C1-S: VS-Rsa
C2-S: VS-RSb
Load balancing systems

• Four main hooks for network load balancing:
 - ARP
 • Different MACs for single IP
 - NAT
 • Different mappings for same IP
 - DNS round robin
 • Different IPs for same DNS name
 - Proxy
 • Different back-ends for same proxy request

• Many vendors of solution: Alteon, F5, Cisco, Resonate, Radware, ...
ARP

• IP address: map one IP to multiple MAC addresses
• Keep track of sessions: which MAC for which TCP session
• Note: optimization
 – Short requests, long replies: only request via load balancer, replies: direct
• Examples: Cisco local director, F5 BIG IP
ARP: roundtrip

9.9.9.9 -> 34.1.1.1
M_{Rout} -> M_{LB-L}
M_{LB-L} 34.1.1.1

9.9.9.9 -> 34.1.1.1
M_{LB-R} -> M_{sysi}
M_{sysi} 34.1.1.1

9.9.9.9 <- 34.1.1.1
M_{rout} <- M_{sysi}
ARP: routing

Arp: 34.1.1.1 – MAC LB

Client

Router

34.1.1.254

34.1.1.1

-> 34.1.1.1

34.1.1.1

“noarp”

34.1.1.3

34.1.1.100

LB

34/03/2014

(c) A. Mariën
NAT based load balancing

- Virtual IP incoming
- Translate to multiple internal IP addresses
- Keep session state
- FW-1, BIG IP
NAT: roundtrip

- Set up client connection
- Decide back-end system
- Translate all packets
DNS round robin

- Do not allow caching of DNS – IP mapping
- Hand out IPs in round-robin mode
- Statistical loadbalancing
- Cisco Distributed Director, 3DNS
Proxy

• Connections forwarded to different IPs
• HTTP reverse proxies
 – Host: a = server a/ Host: b = server b
 – Map:
 • /images: http://a/images
 • /doc: http://b/doc