

J-P. Rosen
Adalog

J-P. Rosen
Adalog

www.adalog.fr

Ada steaming ahead:
New 2012 features

Syntactic sugar (tastes good!)
• For .. of

• Membership with list of values

• if expressions, case expressions

• predicates

for I in Tab'Range loop
Tab (I) := Tab (I) +1;

end loop;

for Elem of Tab loop
Elem := Elem +1;

end loop;

if I in 1..10 | 12 | 20 then ...

X := (if I < 0 then A else B); X := (case Color is
 when Red => 1,

when Green => 2,
when Blue => 4);

X_Is_Prime := (for all Div in 2..Sqrt (X) => X rem Div /= 0);
X_In_Tab := (for some Inx in Tab'Range => Tab (Inx) = X);

Syntactic sugar (tastes good!)
• Floating label

• Expression functions

Allowed in package specifications

for I in Tab'Range loop

,,,

if Nothing_Else_To_Do then

goto Continue;

end if;

…

<<Continue>>

end loop;

function Norm (X, Y : Float) return Float is

 (Sqrt (X**2 + Y**2);

null;

Other small sweet goodies
• use all type

Makes all primitive operations (including enumeration
litterals) directly visible
Default values for discriminants of a limited tagged type

• Default initial value for any (sub)type

• Constant return object

• All records compose for equality
Previously : only tagged types

type Counter is range 0 .. 100

with Default_Value => 0;

Semantic sour medicine
• Many fixes to obscure corners

Accessibility rules
Freezing rules
…

• Casual users don't have to care
If your program doesn't compile any
more, it had a bug

Subprograms
• out and in out modes for functions

Functions (not procedures) had only in (read-only)
parameters
Winner by exhaustion

• Protection against aliasing
For functions and procedures : different out or in out formal
parameters (of an elementary type) are not allowed to refer
to the same actual parameter
Also in other cases where order of evaluation matters

procedure P (X, Y : in out Integer);

function F (Var : in out Integer) return Integer;

…

P (V, V); -- Illegal !

Pair_Of_Ints := (V, F(V)); -- Illegal !

Aspects
• Before:

Pragmas, representation clauses, special constructs

• Now:
Unified way of specifying additional properties of any entity

More clearly bound to entities, avoids some
ambiguities

V : Integer_8;

pragma Atomic (V);

for V'Address use To_Address (16#ADA#);

 V : Integer_8

 with Atomic,

 Address => To_Address (16#ADA#);

User defined container features
• Indexing, referencing, iterator

It's a bit awkward...
Specified by a combination of interfaces and aspects

• All containers have them
Can be treated like arrays : indexing (by any type), for.. in..
loops, for.. of.. loops
Makes containers a lot easier to use

• Not limited to standard containers!

Predefined library
• Internationalization

Access to country codes and language codes

• Files and directories
relative path, case sensitivity...

• UTF encoding
Management of BOMs
String conversions

• More containers
Bounded forms, indefinite holder
Trees and queues
Synchronized containers

Tasking
• Multi-cores

Package System.Multiprocessors
Assignment of task to CPU
Dispatching domains (static and dynamic attachment)

• Synchronous barrier

• Time spent in interrupts

• Yield, Yield_to_higher

Programming with contracts

• What is it ?
With software components, there is a provider of the
component who is different from the user of the component
For each provided service, define rights and obligations of
the user and of the provider of the service

• A precondition expresses what is required from the user.
• A postcondition expresses what is promised by the provider.
• An invariant is a property that always holds (from the POV of the

user).

• These conditions are part of the specification
Visible !

Assertions (Ada 2005)
• pragma Assert

• pragma Assertion_Policy
Check : if the condition is false, raise Assertion_Error with
the given message
Ignore : condition not checked

• Enforce invariants, easily removed for
production use

pragma Assert (Condition, Message);

Subtype predicates
• Generalization of the notion of constraint

Static predicates
• must be static (!)
• enjoy many checks at compile time (including full coverage of case

statements)

Dynamic predicates
• no restriction

Checked only when Assertion_Policy is Check

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0;

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

Pre and Postconditions
• On subprograms

Pre and Post apply to a single type
Pre'Class and Post'Class apply also to descendants
Checked only when Assertion_Policy is Check

• Special attributes for post-conditions
V'Old : value of V on subprogram entrance
F'Result : value returned by function F

procedure Update_Person (P : in out Person)
 with Post => P.Sex = P.Sex'Old
 and P.Birth_Date = P.Birth_Date'Old;

function Inc(X: Integer) return Integer
 with Pre => X /= Integer'Last,
 Post => Inc'Result = X'Old+1;

Type invariants
• Only for private types

• Apply only outside the package
may be temporarily violated by services inside the package

package Places is
 type Disc_Point is private
 with Type_Invariant => Check_In(Disc_Pt);

 function Check_In(D: Disc_Point) return Boolean;
 ... -- various operations on disc points

private
 type Disc_Point is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In (D: Disc_Point) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0)
 with Inline;
end Places;

Conclusion
• Fixes and small improvements

• Friendlier for users

• Important additions:
Aspects
Support for multi-cores
Programming by contract

• Additions & improvement to the standard library

Not an earth-shake,
continuing improvements

More info: http://www.ada2012.org/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

