Ada ia
2012

Ada steaming ahead:
New 2012 features

J-P. Rosen
Adalog

www.adalog.fr

Syntactic sugar (tastes good!) i

 For..of
for I in Tab'Range loop for Elem of Tab Tloop
Tab (I) := Tab (I) +1; [i:::> Elem := Elem +1;
end loop; end loop;

 Membership with list of values
if I in 1..10 | 12 | 20 then ...

* 1f expressions, case expressions

X = (if I < 0 then A else B); X := (case Color 1is

when Red => 1,
when Green => 2,
when Blue => 4);

 predicates

(for a1l Div in 2..sqrt (X) => X rem Div /= 0);
(for some Inx in Tab'Range => Tab (Inx) = X);

X_Is_Prime :
X_In_Tab

Syntactic sugar (tastes good!)
* Floating label

for I in Tab'Range loop

if Nothing_Else_To_Do then

goto Continue;
end if;

null;

<<Continue>>
end loop;

* Expression functions

function Norm (X, Y : Float) return Float is
(Sgrt (X**2 + Y*%*2),;

» Allowed in package specifications

Other small sweet goodies
* use all sype

» Makes all primitive operations (including enumeration
litterals) directly visible

» Default values for discriminants of a limited tagged type

e Default initial value for any (sub)type

type Counter 1is range 0 .. 100
with Default_value => 0;

 Constant return object

» All records compose for equality
P Previously : only tagged types

Semantic sour medicine

* Many fixes to obscure corners
» Accessibility rules

» Freezing rules
> ...

e Casual users don't have to care

» If your program doesn't compile any
more, it had a bug

Subprograms s

e out and in out modes for functions

» Functions (not procedures) had only in (read-only)
parameters

» Winner by exhaustion

* Protection against aliasing

» For functions and procedures : different out or in out formal

parameters (of an elementary type) are not allowed to refer
to the same actual parameter

P Also in other cases where order of evaluation matters

procedure P (X, Y : in out Integer);
function F (var : 1in out Integer) return Integer;

P (V, V); -- ITlegal !
Pair_Of_Ints := (v, F(V)); -- Illegal !

Aspects o

* Before:
P Pragmas, representation clauses, special constructs

V : Integer_8;
pragma Atomic (V);
for V'Address use To_Address (16#ADA#);

* Now:
» Unified way of specifying additional properties of any entity

V : Integer_8
with Atomic,
Address => To_Address (16#ADA#) ;

More clearly bound to entities, avoids some
ambiguities

User defined container features

* Indexing, referencing, iterator
P It's a bit awkward...
» Specified by a combination of interfaces and aspects

e All containers have them

P Can be treated like arrays : indexing (by any type), for.. in..
loops, for.. of.. loops

P Makes containers a /ot easier to use

 Not limited to standard containers!

Predefined library

 Internationalization
P Access to country codes and language codes

 Files and directories
P relative path, case sensitivity...

 UTF encoding

» Management of BOMs
» String conversions

e More containers

» Bounded forms, indefinite holder
» Trees and queues
» Synchronized containers

Tasking

e Multi-cores

P Package System.Multiprocessors
» Assignment of task to CPU
» Dispatching domains (static and dynamic attachment)

* Synchronous barrier
* Time spent 1n interrupts
* Yield, Yield to higher

Programming with contracts o

e Whatis it ?

» With software components, there is a provider of the
component who 1s different from the user of the component

» For each provided service, define rights and obligations of
the user and of the provider of the service
A precondition expresses what is required from the user.
» A postcondition expresses what is promised by the provider.

* An invariant is a property that always holds (from the POV of the
user).

* These conditions are part of the specification
» Visible !

Assertions (Ada 2005) oo

e pragma Assert

pragma Assert (Condition, Message);

e pragma Assertion Policy

» Check : if the condition is false, raise Assertion Error with
the given message

» Ignore : condition not checked

 Enforce invariants, easily removed for
production use

Subtype predicates

 (Generalization of the notion of constraint

» Static predicates
» must be static (!)
« enjoy many checks at compile time (including full coverage of case
statements)
» Dynamic predicates
* no restriction

» Checked only when Assertion Policy is Check

subtype Even 1is Integer
with Dynamic_Predicate => Even mod 2 = O;

subtype winter 1is Month _ _
with Static_Predicate => winter in Dec | Jan | Feb;

Pre and Postconditions

* On subprograms
» Pre and Post apply to a single type
P Pre'Class and Post'Class apply also to descendants
» Checked only when Assertion Policy is Check

» Special attributes for post-conditions
» V'Old : value of V on subprogram entrance
P F'Result : value returned by function F

procedure Update_Person (P : in_out Person)
with Post => P.Sex = P.Sex'0ld _
and P.Birth_Date = P.Birth_bDate'0ld;

function Inc(X: Integer) return Integer
with Pre => X /= Integer'lLast,
Post => Inc'Result = X'0ld+1;

Type 1invariants

* Only for private types
* Apply only outside the package

» may be temporarily violated by services inside the package

package Places is _
type Disc_Point is private _
with Type_Invariant => Check_In(Disc_Pt);

function Check_In(D: Disc_Point) return Boolean;
. -- various operations on disc points

private
type Disc_Point is
record
X, Y: Float range -1.0 .. +1.0;
end record;

function Check_In (D: Disc_Point) return Boolean 1is
(D.X"“""Z + D.Y**?2 <= 1.0)
with Inline;
end Places;

Conclusion e

* Fixes and small improvements
* Friendlier for users

* Important additions:
» Aspects
» Support for multi-cores
» Programming by contract

* Additions & improvement to the standard library

Not an earth-shake,
continuing improvements

More info: http://www.ada2012.org/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

